期刊文献+

热式流量计混合气体组分补偿策略 被引量:2

Compensation Strategy for Thermal Flow Meters Subject to Component Variations of Gas Mixtures
下载PDF
导出
摘要 混合气体的组分变化将对热式流量计的输出造成一定影响,这是该类流量计在工程应用中的难题.本文从定温热式气体流量计的基本公式出发,结合电路结构,推导了热式流量计在不同气体组分条件下使用时输出信号之间的关联方程,定义了补偿系数.并提出利用补偿系数在流量计标定数据的基础上,进行组分补偿的方法和过程.将该补偿策略分别应用于S IERRA热式流量计以及自行设计的热式气体流量计样机,给出了其在现场煤气流量测量中的实验结果,验证了该补偿策略的有效性和实用性. The component variation of gas mixture definitely brings measurement errors to the thermal flow meters (TFM), which results in a difficult problem for the applications of TFM. The relation equations for the outputs of TFM subject to different components are deduced and a compensation coefficient is defined. They are based on the theoretical equations of constant temperature TFM and its circuitry structure. The compensation strategy and compensation procedure are also proposed, based on the compensation coefficient and the calibration data of TFM. This strategy is applied to a commercially available SIERRA TFM and a TFM prototype developed by the authors respectively. The validity and practicability of this compensation strategy are evidenced by the field experiments.
出处 《测试技术学报》 2009年第4期307-312,共6页 Journal of Test and Measurement Technology
关键词 热式流量计 组分补偿 混合气体 补偿系数 物性参数 thermal flow meter component compensation strategy gas mixture compensation coefficient physical property parameter
  • 相关文献

参考文献24

  • 1Dell'Isola M, Cannizzo M, Diritti M. Measurement of high-pressure natural gas flow using ultrasonic flowmeters [J]. Measurement, 1997, 20(2): 75-89.
  • 2Vyas J C, Katti V R, Gupta S K, et al. A non-invasive ultrasonic gas sensor for binary gas mixtures[J]. Sensors and Actuators B, 2006, 115: 28-32.
  • 3Laghrouche M, Adaneb A, Boussey J, et al. A miniature silicon hot wire sensor for automatic wind speed measurements[J]. Renewable energy, 2005, 30: 1881-1896.
  • 4Viswanathan M, Rajesh R, Kandaswamy A. Design and development of thermal mass flowmeters for high pressure application[J]. Flow measurement and instrument, 2002, 13: 95-102.
  • 5Dijkstra M, de Boer M J, Berenschot J W, et al. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels[J]. Sensors and Actuators A, 2008, 143: 1-6.
  • 6Chiu N F, Hsiao T C, Lin C W. Low power consumption design of micro-machined thermal sensor for portable spirometer[J]. Tamkang Journal of Science and Engineering, 2005, 8(3): 225-230.
  • 7Steurer J, Kohl F. Adaptive controlled thermal sensor for measuring gas flow[J]. Sensors and Actuators A, 1998, 65: 116-122.
  • 8Balla S J, Ashforth-Frosta S, Jambunathana K, et al. Appraisal of a hot-wire temperature compensation technique for velocity measurements in non-isothermal flows EJ]. International Journal of Heat and Mass Transfer, 1999, 42:3097-3102.
  • 9Berlicki T M, Murawski E, Osadnik S J, et al. Analysis of an ambient temperature influence on thermal thin-film microsensor[J]. Sensors and Actuators A, 1994, 45: 169-172.
  • 10Nam T, Kim S, Park S. The temperature compensation of a thermal flow sensor by changing the slope and the ratio of resistances[J]. Sensors and actuators A, 2004, 114: 212-218.

二级参考文献7

共引文献18

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部