期刊文献+

一种多目标优化问题的混合优化算法 被引量:10

Proposal of Hybrid Optimization Algorithm for Solving Multi-objective Optimization Problems
原文传递
导出
摘要 利用分布估计算法(EDA)的全局搜索性能及差分进化(DE)算法的局部优化能力,提出了一种多目标优化问题的混合智能求解方法DE-EDA。DE-EDA的子代个体由两部分构成,一部分按差分进化算法生成,另一部分则是通过对分布估计算法的概率模型进行随机采样生成。利用模拟退火技术在线调整尺度因子Pr,即在进化的初期选择较大的Pr,以保证EDA起主导作用,由EDA引导DE搜索向Pareto前端,增加全局搜索能力,然后在进化的过程中逐渐降低Pr,使得DE逐渐占据主导作用,确保解精确收敛到Pareto前端。通过4组基准函数来测试算法性能,并与NSGA-II和DE算法进行实验比较,结果表明该方法不仅解的多样性和分布性好,而且能够有效提高种群进化的收敛速度,是一种求解多目标优化问题的有效方法。 A hybrid intelligent algorithm called DE-EDA for solving multi-objective optimization problems was proposed by taking advantage of the global searching capability of estimation of distribution algorithm (EDA) and the local optimizing capability of differential evolution (DE). The offspring population of DE-EDA is composed of two parts, one part of a trial solution generated comes from the DE, and the other part is sampled in the search space from the constructed probability distribution model ofEDA. A scaling factor Pr used to balance contributions of DE and EDA can be adjusted in on-line manner using a simulated annealing method. At the initial evolutionary phase, a larger Pr should be adopted to ensure the dominant function of EDA and to enhance the global searching capability. EDA directs DE to search along the Pareto front. The scaling factor should be reduced during the evolutionary process to make DE take up the dominant function gradually and to ensure solutions converge to true Pareto front. The hybrid algorithm was validated using four benchmark cases. The experimental results show that DE-EDA, compared with NSGA-II and DE algorithms, can find many Pareto optimal solutions distributed onto the Pareto front and can improve convergence speed effectively.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期4980-4985,共6页 Journal of System Simulation
基金 国家自然科学基金(60804022) 教育部新世纪优秀人才支持计划(NCET-08-0836) 江苏省自然科学基金(BK2008126) 高等学校博士学科点专项科研基金(20070290537 200802901506)
关键词 多目标优化 差分进化 分布估计算法 PARETO最优解 multi-objective optimization differential evolution estimation of distribution algorithm Pareto optimal solution
  • 相关文献

参考文献15

  • 1Coello C A C, Aquirre A H, Zitzler E. Evolutionary Multi-objective Optimization [J]. European Journal of Operational Research (S0377-2217), 2007, 181(3): 1617-1619.
  • 2蓝艇,刘士荣,顾幸生.基于进化算法的多目标优化方法[J].控制与决策,2006,21(6):601-605. 被引量:26
  • 3Deb K, Pratap A, Agarwal S, Meyarivan T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation (S 1089-778X), 2002, 6(2): 182-197.
  • 4Dehuri S, Patnaik S, Ghosh A, Mall R. Application of Elitist Multi-objective Genetic Algorithm for Classification Rule Generation [J]. Applied Soft Computing Journal (S1568-4946), 2008, 8(1): 477-487.
  • 5Praveen K T, Sanghamitra B, Sankar K E Multi-objective Particle Swarm Optimization with Time Variant Inertia and Acceleration Coefficients [J]. Information Sciences (S0020-0255), 2007, 177(2): 5033-5049.
  • 6Veenhuis C, Koppen M, Vicente G R. Evolutionary Multi-objective Optimization of Particle Swarm Optimizers [C]// Proceedings of the IEEE Congress on Evolutionary Computation, Singapore, 2007. USA: IEEE, 2007: 2273-2280.
  • 7Alaya I, Solnon C, Ghedira K. Ant Colony Optimization for Multi-objective Optimization Problems [C]// Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, Patras, Greece, 2007. USA: IEEE, 2007: 450-457.
  • 8贺益君,陈德钊.用于多目标优化的蚁群算法的构建及其应用[J].高技术通讯,2006,16(12):1241-1245. 被引量:15
  • 9Tan K C, Goh C K, Mamun A A, Ei E Z. An Evolutionary Artificial Immune System for Multi-objective Optimization [J] European Journal of Operational Research (S0377-2217), 2008, 187(2): 371-392.
  • 10Storn R, Price K. Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces [J]. Journal of Global Optimization (S0957-4174), 1997, 11(4): 341-359.

二级参考文献215

共引文献533

同被引文献109

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部