期刊文献+

多星成像调度问题基于分解的优化算法 被引量:16

Optimization algorithm based on decomposition for satellites observation scheduling problem
原文传递
导出
摘要 提出了一种求解多星成像调度问题的基于分解的优化算法,将问题分解为任务分配主问题与单星成像调度子问题.任务分配主问题生成不同卫星的任务分配方案,单星成像调度子问题则根据分配的任务进行优化,生成每颗卫星的成像调度方案.采用自适应的蚁群算法求解任务分配主问题,通过自适应参数调整策略及信息素平滑策略,实现全局搜索和快速收敛间的平衡.采用启发式算法及快速模拟退火算法求解单星成像调度子问题,通过综合多颗卫星的调度结果,可以对任务分配方案进行评价,引导蚁群算法搜索优化的任务分配方案,最终得到多颗卫星的成像调度方案.大规模测试算例验证了算法的效率. An optimization algorithm based on decomposition is proposed for solving satellites observation scheduling problem. The problem is decomposed into task assignment main problem and single satellite scheduling sub-problem. In task assignment phase, the tasks were allocated to the satellites, and each satellite would schedule the task respectively in single satellites scheduling phase. We adopted an adaptive ant colony optimization algorithm to search the optimal task assignment scheme. Adaptive parameter adjusting strategy and pheromone trail smoothing strategy are introduced to balance the exploration and the exploitation of search process. A heuristic algorithm and a very fast simulated annealing algorithm were proposed to solve the single satellite scheduling problem. The task assignment scheme was valued by integrating the observation scheduling result of multiple satellites. The result was responded to the ant colony algorithm, which can guide the search process of ant colony. Computation results show that the approach is effective to the satellites observation scheduling problem.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2009年第8期134-143,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70601035 70801062)
关键词 成像卫星 分解优化 自适应蚁群算法 启发式算法 快速模拟退火 earth observing satellites decomposition optimization adaptive ant colony optimization heuristic algorithm very fast simulated annealing
  • 相关文献

参考文献17

  • 1Morris R A, Dungan J L, Bresina J L. An information infrastructure for coordinating earth science observa tions[C]//In Proc 2nd IEEE International Conference on Space Mission Challenges for Information Technology, 2006.
  • 2Lin W C, Liao D Y, Liu C Y, et al. Daily imaging scheduling of an earth observation satellite[J]. IEEE Transactions on Systems, Man, and Cybernetics -- Part A: Systems and Humans, 2005, 35(2): 213--223.
  • 3Bensana E, Verfaillie G, Bataillie N, et al. Exact and approximate methods for the daily management of an earth observing satellite[C]//Proceedings of SpaceOPS, Germany: Munich, 1996.
  • 4徐雪仁,宫鹏,黄学智,金勇.资源卫星(可见光)遥感数据获取任务调度优化算法研究[J].遥感学报,2007,11(1):109-114. 被引量:29
  • 5Bianchessi N, Cordeau J F, Desrosiers J, et al. A heuristic for the multi-satellite, multi-orbit and multi-user management of earth observation satellites[J]. European Journal of Operational Research, 2005, 177(2): 750-762.
  • 6Cordeau J F, Laporte G. Maximizing the value of an earth observation satellite orbit [J]. Journal of the Operational Research Society, 2005, 56(8): 962-968.
  • 7Lemaitre M, Verfaillie G. Selecting and scheduling observations of agile satellites[J]. Aerospace Science and Technology, 2002(6): 367-381.
  • 8Wolfe W J, Sorensen S E. Three scheduling algorithms applied to the earth observing systems domain[J]. Management Science, 2000, 46(1): 148-168.
  • 9Dorigo M, Stutzle T. Ant Colony Optimization[M]. Cambridge, MA: MIT Press, 2004.
  • 10Blum C. Ant colony optimization: Introduction and recent trends[J]. Physics of Life Reviews, 2005, 2(4): 353- 373.

二级参考文献25

  • 1陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报(自然科学版),2004,32(6):802-805. 被引量:136
  • 2Dorigo M, Maniezzo Vittorio, Colorni Alberto. The Ant System: Optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B,1996, 26(1): 1-13.
  • 3Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 4Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L. Ant-based Load Balancing in Telecommunications Networks [J]. Adaptive Behavior, 1997, 5(2): 169-207.
  • 5Bohachevsky.Generalized simulated annealing for function optimization[J].Techwometrics,1986,28(3):209.
  • 6Arts E,Korst J.Simulated annealing and boltzmann machine[M].New York:Wiley & Sons,1989.
  • 7Goffe W L,Ferrier G D,Rogers J.Simulated annealing:An initial application in econometrics[J].Computational Economics,1992,5(2):133.
  • 8Hajek B.Cooling schedules for optimal annealing[J].Mathematics of Operations Research,1988,13:311.
  • 9Gelfand S B.Analysis of simulated annealing for optimization[D].Cambridge:Massachusetts Institute of Technology,1987.
  • 10Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simulated annealling[J].Science,1983,220:671.

共引文献396

同被引文献133

引证文献16

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部