期刊文献+

一种改进的盲源分离技术及其在SEMG中的应用 被引量:1

A Modification to the Blind Source Separation and its Application on SEMG
下载PDF
导出
摘要 针对多通道表面肌电信号(SEMG)采集时形成的混迭现象,提出一种基于时频分析的参考累积量盲源分离方法。以多路观测信号互为参照分别计算累积量矩阵,利用时频分析得到时间尺度累积量矩阵,并构造对照函数,通过非正交联合对角化方法得到SEMG的最优估计。仿真实验表明该算法在解决SEMG的混迭现象有很好的分离效果,与FastICA、JADE算法相比,信号间的相似系数和算法性能指数明显改善,算法效率提高。 In order to eliminate the signal aliasing of multi-channel Surface Electromyography (SEMG),this paper proposes a new separation method based on the referenced cumulant on the time-frequency. First, the technique calculates the cumulant matrices through taking the observation signals as the cross-reference signals. ;second, gets the time-scale cumulant matrices through the time-frequency analysis; third, constructs the contrast function by the time-scale cumulant matrices. The estimation of the SEMG can be performed by the non-orthogonal joint diagonalization. The experimental results indicate that this method is an effective way to separate multi-channel SEMG, its separating effect is better than the FastICA and the JADE from the coefficient of similarity and the Performance Index, and the efficiency of this algorithm is also improved.
作者 罗志增 周炜
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第8期1204-1207,共4页 Chinese Journal of Sensors and Actuators
基金 国家863项目资助(2008AA04Z212) 国家自然科学基金资助(60874102)
关键词 表面肌电信号 盲源分离 参考累积量矩阵 非正交联合对角化 Surface Electromyography Blind Source Separation Referenced Cumulant Matrices Non-Orthogonal Joint Diagonalization
  • 相关文献

参考文献12

二级参考文献61

共引文献36

同被引文献8

  • 1高颖,李月,杨宝俊.变步长自适应盲源分离算法综述[J].计算机工程与应用,2007,43(19):75-79. 被引量:10
  • 2Yong X, Ward R K, Birch G E. Generalized Morphological Compo- nent Analysis for EEG Source Separation And Artifact Removal [ C ]//Neural Engineering, 2009. NER' 09.4th International IEEE/ EMBS Conference on. IEEE, 2009 : 343-346.
  • 3Cardoso J F, Laheld B H. Equivariant Adaptive Source Separation [J]. IEEE Transactions on Signal Processing, 1996, 44 (12) : 3017-3030.
  • 4Amari S I. Natural Gradient Works Efficiently in Learning [J]. Neural computation, 1995,10(2) :251-276.
  • 5Zhu X L, Zhang X D, Ding Z Z, et al. Adaptive Nonlinear PCA Al- gorithms for Blind Source Separation Without Prewhitening [J].IEEE Transactions on Circuits and Systems I: Regular Papers, 2006,53 ( 3 ) : 745 -753.
  • 6Ye J, Huang T. New Fast-ICA algorithms for Blind Source Separa- tion without Prewhitening[ M ]//Applied Informatics and Communi- cation. Springer Berlin Heidelberg, 2011 : 579-585.
  • 7Yuan L, Wang W, Chambers J A. Variable Step-Size Sign Natural Gradient Algorithm for Sequential Blind Source Separation [J]. Signal Processing Letters, IEEE, 2005,12 (8) : 589-592.
  • 8王小敏,曾生根,夏德深.独立分量分析算法的改进研究[J].电子器件,2008,31(5):1681-1684. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部