期刊文献+

噪声和振动信号的谐波小波时频表示 被引量:3

Time-Frequency Distribution of Acoustic and Vibration Signals Based on Harmonic Wavelet Transformation
下载PDF
导出
摘要 谐波小波变换的时频表示方法应用于持续时间、带宽和采样率差别很大的多种目标的噪声和振动信号处理当中,将其结果与基于STFT方法的结果进行了比对,并给出了其在不同应用场合的参数。结果表明,谐波小波方法用于信号的时频表示,具有很好的灵活性和突出的性能优点,有较好的应用前景。 The advantage of the harmonic wavelet lies in two points, one is its flexibility of parameters set-up due to different conditions, the other is its rectangular shape in frequency domain. Time-fre- quency distribution based on the harmonic wavelet transformation provides better time and frequency resolution and higher contrast to the background than the method based on FFT does. This is beneficial for successive detection or identification process. In this paper, time-frequency distribution analysis based on the harmonic wavelet transformation is applied to multi-objective process of noise and vibration signals with large differences in time interval, bandwidth and sampling. The results are compared with those based on STFT method. The parameters used in the computation are given for different situations. The results show that this method has good flexibility and obvious advantage. Thus, it has good prospects in application. Its disadvantage is the large computer-time consuming.
出处 《噪声与振动控制》 CSCD 北大核心 2009年第4期42-45,共4页 Noise and Vibration Control
关键词 振动与波 谐波小波 时频分析 谐波小波变换 vibration and wave harmonic wavelet time-frequency distribution analysis harmonic wavelet transformation
  • 相关文献

参考文献9

  • 1张贤达.现代信号处理[M].北京:清华大学出版社,2004.
  • 2胡昌华,周涛,夏启兵,等.西安:基于Matlab的系统分析与设计一时频分析[M].西安电子科技大学出版社,2003.
  • 3David. E. Newland, Harmonic wavelet analysis [ M ]. Mathematical and Physical Sciences, 1993,443 ( 10 ) : 203 - 225.
  • 4Ruqiang Yan and Robert X. Gao, Generalized harmonic wavelet as an adaptive filter for machine health diagnosis, Smart Structures and Materials [ M ]. Proc. of SPIE vol. 5765,2005, pp786 - 793.
  • 5David. E. Newland, a Wavelet analysis of vibration[ J]. Part 1. Theory. ASME J. Vib. Acoustics ,vol. 116,Oct, 1994, pp409 - 425.
  • 6李瑰贤,周铭,韩继光,陈域广,王庆华.改进谐波小波及其在振动信号时频分析中的应用[J].振动工程学报,2001,14(4):388-391. 被引量:8
  • 7赵玉成,袁树清,许庆余.奇异信号的谐波小波分析[J].工程力学,2000,17(3):60-65. 被引量:9
  • 8李舜酩,许庆余.微弱振动信号的谐波小波频域提取[J].西安交通大学学报,2004,38(1):51-55. 被引量:41
  • 9黄知涛,周一宇,姜文利,等.循环平稳信号处理及应用[M].北京:科学出版社,2005.

二级参考文献7

  • 1张佩瑶,马孝江,王吉军,朱泓.小波包信号提取算法及其在故障诊断中的应用[J].大连理工大学学报,1997,37(1):67-72. 被引量:17
  • 2[4]D E Newland. Wavelet analysis of vibration[J]. Part 2:Wavelet maps. Trans. ASME J. Vibration & Acoustic, 1994, 116: 417-425.
  • 3[1]I Daubechies. Orthonormal bases of compactly supported wavelet[J]. Common Pure and Applied Mathematics, 1988, 12: 909-996.
  • 4[2]D E Newland. Harmonic wavelet analysis[J]. Proc. R. Soc. Land. A, 1993, 443:203-225.
  • 5[3]D E Newland. Wavelet analysis of vibration[J]. Part 1:Thoery. Trans. ASME J. Vibration & Acoustic , 1994, 116: 409-416.
  • 6李世雄,小波变换和反演数学基础,1994年,27—30页
  • 7胡茑庆,温熙森,陈敏.随机共振原理在强噪声背景信号检测中的应用[J].国防科技大学学报,2001,23(4):40-44. 被引量:27

共引文献70

同被引文献38

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部