期刊文献+

基于Symlets小波变换的燃气管道泄漏诊断方法 被引量:5

Leak diagnosis in gas pipelines based on Symlets wavelet transformation
下载PDF
导出
摘要 提出一种新的基于无线传感器网络的管道泄漏诊断方法,以解决现有管道泄露诊断方法存在的定位精度差、距离受限和实时性差的问题。该方法采用分布式数据融合技术,在源节点处利用Symlets小波变换提取包含泄漏特征的单模态声发射信号,消除噪声干扰及频散现象;在汇聚节点处根据信号幅值大小将泄漏点两侧的信号排列组合,利用互相关时差定位和加权平均原理获得泄漏点位置坐标。实验结果表明,基于无线传感器网络的新型管道泄露诊断方法可显著提高泄漏点定位精度,其定位误差小于5%。 A novel pipeline leakage diagnosis method based on wireless sensor networks is presented to improve the accuracy of leakage localization, the detecting range and the real-time performance. In order to eliminate noise and the frequency dispersion, the method uses the distributed data aggregation technique combined with the Symlets wavelet transformation to convert original signals to single-mode acoustic emission signals in source nodes, and in sink nodes, it divides the singlemode signals into couples from ordinary nodes. The leak position is obtained by the cross-correlation time differences of arrival (TDOA) localization and the weighted average method. The simulation results show that the localization accuracy can be improved obviously by aggregating the data from multi-nedes. The localization error of the method is less than 5%.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第8期872-876,共5页 Chinese High Technology Letters
基金 国家自然科学基金(60873240) 北京市教育委员会共建项目专项资助项目
关键词 泄漏检测 无线传感器网络 模态声发射 小波变换 leak detection, wireless sensor network, modal acoustic emission, wavelet transformation
  • 相关文献

参考文献10

  • 1Sanderford B. Wireless sensor networks - battery operation of link and sensor. In: Proceedings of the Sensors for Industry Conference, Houston, Texas, USA, 2002. 169-171.
  • 2Scheible G, Schutz J, Apneseth C. Novel wireless power supply system for wireless communication devices in industrial automation systems. In: Proceedings of the IEEE Annual Conference of the Industrial Electronics Society (IECON 2002), Sevilla, Spain, 2002. 1358-1363.
  • 3Dunegan H L. Modal analysis of acoustic emission signals. Journal of Acoustic Emission, 1998, 15(1): 1-4.
  • 4Taghvaei M, Beck S B M, Staszewski W J. Leak detection in pipelines using cepslxum analysis. Measurement Science and Technology, 2006, 17:367-372.
  • 5Gao, X M, Fan H, Huang T, et al. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(1) :133-138.
  • 6靳世久,王立宁,李健,倪世坤,于明祥.原油管道漏点定位技术[J].石油学报,1998,19(3):93-97. 被引量:73
  • 7李帆,张丽娟.基于小波分析消噪技术的燃气管道泄漏检测与定位[J].流体机械,2006,34(12):47-51. 被引量:5
  • 8Chen H L, Ye H, Chen L, et al. Application of support vector machine learning to leak detection and location in pipelines. In: Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IMTC 2004), Como, Italy, 2004.3.2273-2277.
  • 9Henrique V, Morooka C, Guilherme I, et al. Leak detection in petroleum pipelines using a fuzzy system. Journal of Petroleum Science and Engineering, 2005, 49:223-238.
  • 10Muggleton J M, Brennan M J. Leak noise propagation and attenuation in submerged plastic water pipes. Journal of Sound and Vibration, 2004, 278:527-537.

二级参考文献7

  • 1计通,石油消息,1995年
  • 2郑莹娜,仪器仪表学报,1991年
  • 3严大凡,输油管道设计与管理,1989年
  • 4Chu-Kuei Tu,Yan-Yao Jiang.Development of noise reduction algorithm for underwater signals[A].Underwater Technology,2004.UT 04.2004 International Symposium[C].2004.175-179.
  • 5Agoris P D,Meijer S,Gulski E,et al.Threshold selection for wavelet denoising of partial discharge data[A].Electrical Insulation,2004.Conference Record of the 2004 IEEE International Symposium on 19-22 Sept[C].2004.62-65.
  • 6王海生,叶昊,王桂增.基于小波分析的输油管道泄漏检测[J].信息与控制,2002,31(5):456-460. 被引量:41
  • 7李炜,陈希平,毛海杰,潘纬.天然气管道泄漏点的定位检测方法研究[J].甘肃工业大学学报,2003,29(4):84-87. 被引量:32

共引文献76

同被引文献80

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部