期刊文献+

球结构支持向量机在转轴碰摩位置识别中的应用 被引量:9

Diagnostic approach to detect rub-impact fault of shaft based on sphere support vector machines
下载PDF
导出
摘要 碰摩是旋转机械中常见的故障,碰摩故障位置识别是一个有待深入研究的故障诊断问题。对球结构支持向量机进行改进,充分考虑分类球的大小对分类的影响,经过理论分析和仿真实验得到新的分类规则。把转轴上不同位置的碰摩当作不同的故障,转轴碰摩故障位置识别就是个较大规模的多类别故障诊断问题,运用改进的球结构支持向量机进行转轴碰摩故障位置识别。实验结果表明,和其他同类算法相比,改进的球结构支持向量机具有识别率高、速度快、计算量少、数据处理容量大等优点,适合于较大规模的多类别故障诊断。 Sphere support vector machines, a kind of multi-classes support vector machines, were improved taking into account the influence of sphere size on classification and an effective and simple rule of classification was derived through rational analysis and simulation experiment. The rub-impacts in different parts of shaft were regarded as different faults, and their position detection becomes a large-scale multi-classes faults diagnosis and can be solved by the improved sphere support vector machines. The experiment of rub-impact position detection of simulated shaft shows that the improved sphere support vector machines distinctly improve the fault recognition accuracy, the diagnosis rapidity and the data processing capability, and are more suitable for practical application in large-scale multi-classes faults diagnosis.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第8期70-73,77,共5页 Journal of Vibration and Shock
基金 教育部新教师基金项目(200805041079) 国家杰出青年科学基金(50425516)
关键词 故障诊断 球结构支持向量机 多类分类算法 碰摩 faults diagnosis sphere support vector machines multi-classes support vector machines rub-impact fault
  • 相关文献

参考文献8

  • 1Wang Q, Chu F. Experimental determination of the rubbing location by means of acoustic emission and wavelet transform [J]. Journal of Sound and Vibration,2001,248( 1 ) :91 - 103.
  • 2卢文秀,褚福磊,郭丹.基于遗传算法的碰摩位置辨识[J].清华大学学报(自然科学版),2005,45(2):208-211. 被引量:9
  • 3Vapnik V N. The nature of statistical learning theory. New York: Springer-Verlag, 1999.
  • 4张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5朱美琳,刘向东,陈世福.用球结构的支持向量机解决多分类问题[J].南京大学学报(自然科学版),2003,39(2):153-158. 被引量:48
  • 6Bottou L, Corts C, et al. Comparison of classifier methods: A case study in handwrinting digit recognition. In: Internatioanl Confenrence on Pattern Recognition. IEEE. Computer Society Press, 199d ,2:77 - 87.
  • 7Kressel U. Pairwise classification and support vector machines. In: Scholkopf B, ed. Advances in Kernel Methods-Support vector learning [ M ]. Massachusetts: MIT Press, 1999. 255 - 268.
  • 8马笑潇,黄席樾,柴毅.基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003,18(3):272-276. 被引量:78

二级参考文献20

  • 1耿遵敏,宋孔杰,李兆前,张兴华,万德玉.关于柴油机振声特点及动态诊断方法的研究与讨论[J].内燃机学报,1995,13(2):140-147. 被引量:32
  • 2褚福磊,张正松,冯冠平.碰摩转子系统的混沌特性[J].清华大学学报(自然科学版),1996,36(7):52-57. 被引量:88
  • 3马笑潇.智能故障诊断中的机器学习新理论及其应用[D].重庆:重庆大学,2002.
  • 4Muszynska A. Rotor-to-stationary element rub-related vibration phenomena in rotating machinery, Literature survey [J]. The Shock and Vibration Digest, 1989, 21(3): 3-11.
  • 5Wang Q, Chu F. Experimental determination of the rubbing location by means of acoustic emission and wavelet transform [J]. Journal of Sound and Vibration, 2001, 248 (1): 91-103.
  • 6Holland J. Adaptation in Natural and Artificial Systems [M]. Ann Arbour: The University of Michigan Press, 1975.
  • 7Chu F, Zhang Z. Bifurcation and chaos in a rub-impact Jeffcott rotor system [J]. Journal of Sound and Vibration, 1998, 210 (1): 1-18.
  • 8Vapnic 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 9Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag, 1995, 5-13.
  • 10Burges C J C, Scholkopf B. Improving the accuracy and speed of support vector learning machines.Advances in Neural Information Processing Systems 9. Cambridge: MIT Press, 1997: 375-381.

共引文献148

同被引文献76

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部