期刊文献+

一种新型的改进UKF在MIMU/GPS组合导航系统中的应用

Application of a New Improved UKF for MIMU/GPS Integrated Navigation System
下载PDF
导出
摘要 对于MIMU/GPS组合导航系统,采用传统UKF进行滤波时,其Sigma点集的MSE会随系统维数的增大而不断增大,导致估计精度越来越差,尤其是姿态误差角的估计会出现较大偏差。针对这一问题,提出了一种基于超立方体代表点的改进UKF算法并将其应用于低成本MIMU/GPS组合导航系统。仿真结果表明,改进的UKF算法对于高维强非线性组合导航系统的估计精度优于传统UKF,更适用于大角度姿态误差的准确估计。 The nonlinear error-quaternion model was established for MIMU/GPS integrated navigation system to achieve accurate and reliable navigation solution a kind of improved UKF algorithm based on hypercube points was proposed and applied to low-cost MIMU/GPS integrated navigation system to solve the problems of the mean squared error (MSE) of Sigma set and attitude errors of integrated navigation system increasing with the dimension of state increasing in traditional unscented Kalman filter (UKF). The simulation results show that the estimate accuracy of improved algorithm exceed traditional UKF for high-dimensional strongly nonlinear integrated navigation system, more applicable to accurate estimates of large attitude errors.
作者 郭志英 富立
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第4期8-12,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 航天支撑技术基金资助
关键词 组合导航 Unscented卡尔曼滤波(UKF) 超立方体代表点 integrated navigation Unscented Kalman filter(UKF) hypercube points
  • 相关文献

参考文献6

  • 1毛克诚,孙付平,李海丰.UKF在GPS/INS组合导航系统中的应用[J].测绘科学技术学报,2007,24(3):200-202. 被引量:6
  • 2方开泰 贺曙东.在正态总体中如何选择给定数目的代表点的问题.应用数学学报,1984,17(3):363-372.
  • 3S J Julier. J K Uhlmann. A new extension of the Kalman filter to nonlinear systems[C]// The 11th Int. Symp. on Aerospace/Defence Sensing. Simulation and Controls, Orlando, FL. 1997.
  • 4张红梅,邓正隆.UKF方法在陆地车辆组合导航中的应用[J].中国惯性技术学报,2004,12(4):20-23. 被引量:10
  • 5Yu M J, Lee J G, Park H W. Comparison of SDINS in-flight alignment using equivalent error models[J]. IEEE Trans. Aerospaee and Electronic Systems, 1999, 35(3) : 1046-- 1054.
  • 6Bilal Akin, Umut Orguner, Aydin Ersak. State estimation of induction motor using unscented Kalman filter[C]//Proc, of IEEE Conference on Control Applications. CCA. 2003: 915-919.

二级参考文献12

  • 1吴秋平,万德钧,王庆.车辆组合导航系统中的滤波新算法[J].中国惯性技术学报,1999,7(2):23-25. 被引量:3
  • 2房建成,申功勋,万德钧.一种自适应联合卡尔曼滤波器及其在车载GPS/DR组合导航系统中的应用研究[J].中国惯性技术学报,1998,6(4):2-7. 被引量:19
  • 3毛克彪,覃志豪,徐斌.针对ASTER数据的单窗算法[J].测绘学院学报,2005,22(1):40-42. 被引量:11
  • 4[1]Xiaoying Kong.INS algorithm using quaternion model for low cost IMU[J].Robotics and Autonomous Systems,2004,46:221-246.
  • 5[2]Julier S J,Uhlmann J K.A new extension of Kalman Filter to nonlinear systems[A].The proceedings of the American control conference[C].Seattle Washington,1995:1628-1632.
  • 6[3]Wan E A,Rudolph der Merwe.The Unscented Kalman filter for nonlinear estimation[A].The Proceedings of IEEE symposium on adaptive systems for signal processing communications and control[C].Lake Louise,Alberta Canada,2000:153-158.
  • 7[4]Pande Hartana.Comparison of linearized and extended Kalman filter in GPS-aided inertial navigation system[D].Ottawa:Carleton University.2000.
  • 8Julier S, Uhlmann J K. A general method for approximating nonlinear transformations of probability distributions[R]. Robotics Research Group, Department of Engineering Science, University of Oxford. 1994.
  • 9Julier S, Uhlmann J K, et al. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans. A. C., 2000, 45(3): 477-482.
  • 10Uhlmann J K. Simultaneous map building and localization for real time applications[R]. U.K.: University of Oxford, 1994.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部