期刊文献+

大跨斜拉桥基于遗传算法的传感器优化布置方法 被引量:20

Optimal placement of accelerometers in long cable-stayed bridges based on genetic algorithm
下载PDF
导出
摘要 以润扬大桥斜拉桥为研究对象,分析了基于遗传算法的加速度传感器优化布置实施的过程,包括传感器布设位置的编码以及控制参数、目标函数和评价指标的选取.探讨了遗传算法目标函数类型、需要监控的振型数量等因素对优化布置方案的影响,提出了Gramian矩阵行列式值、MAC矩阵非对角元均方根、MAC矩阵非对角元最大值、Gramian矩阵元素和以及模态应变能这5种可行的优化布置方案评价指标,分析了多目标函数优化布置方法与单目标函数方法相比的优越性.研究结果表明,Gramian矩阵行列式是较优越的目标函数,并建议采用Gramian矩阵行列式值、MAC矩阵非对角元均方根和MAC矩阵非对角元最大值作为布点方案的评价指标.利用基于环境激励的斜拉桥现场测试数据对以上计算得到的优化布置方案和结论进行了验证. Optimal placement schemes of accelerometers based on genetic algorithm (GA) were applied to Runyang Cable-stayed Bridge (RYCB), including the coding of accelerometers placement and the selection of control parameter, objective functions and evaluation indexes. Key issues on the functions for optimized objectives, vibration modals to be obtained and feasible evaluation indicators about optimized parameters were studied with GA-based calculations. The results show that multi-objective target functions for optimization are preferable, and it is suggested that the evaluation index such as the Gramian matrix determinant values, off-diagonal elements mean square root of MAC ( modal assurance criterion) matrix and maximum off-diagonal elements of MAC matrix are available for evaluating the feasibility of optimized parameters. Finally, the results of accelerometers placement for structural health monitoring system of RYCB obtained from the GA-based sensor placement schemes have been validated through the measured data of modals from the field test on the bridge.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第4期825-829,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(10672038) 江苏省"六大人才高峰"资助项目
关键词 遗传算法 加速度传感器 有限元模型 优化布置 斜拉桥 genetic algorithms acceleration sensor finite element model optimized placement cable-stayed bridge
  • 相关文献

参考文献8

二级参考文献34

  • 1史家钧 项海帆 等.确保大型桥梁安全性与耐久性的综合监测系统[J].同济大学学报,1997,25:71-75.
  • 2Baldwin TL, MiliL, Boisen M B, et al. Power system observability with minimal phasor neasurement placement[J]. IEEE Transactions on Power Systems, 1993, 8(2): 707-715.
  • 3Ota Y, Ukai H, Naksmura K, et al. Evaluation of stability and electric power quality in power system by using phasor measurements[C]. Proceedings of Intemational Conference on Power System Technology, Australia, December 2000.
  • 4Kamwa I, Grondin R. PMU coafigeuration for system dynamic performance measurement in large multiarea power systems[J].IEEE Transactions on Power Systems, 2002, 17(2): 385-394.
  • 5Wehenkel L. A statistical spproach to the identification of electrical regions in power systems [C]. Proceedings of Stockbolm Power Tech Conference, Sweden, June 1995.
  • 6SAS Institute Inc. SAS/STAT User's Guide, Version 8[Z]. Cary, NC:SAS Institute Inc, 2000.
  • 7Sadesh P,Spall J C.Optimal sensor configaration for complex systems[C]. Proceedings of the American Control Confereace, USA, June 1998.
  • 8Kincaid R K, Padula S L. D-optimal designs for sensor and actuator locations[J].Computers & Operations Research, 2002, 29(6): 701-713.
  • 9Wang B S, Liang X B, NiYQ, etal. Comparative study of damage indices in application to a ling-span suspension bridge[A]. In: Ko J M, Xu Y L, eds.proceedings of the International Conference on Advances in Strctural Dynamics[C].Hong Kong:the Hongkong Polytechnic University,2000.1085-1092
  • 10Stubbs N, Kim J T. Damage localization in structures without baseline model parameters[J].AIAA J, 1996, 34(8) : 1644-1649.

共引文献266

同被引文献300

引证文献20

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部