期刊文献+

一种改进的自适应差分进化算法 被引量:29

A Modified Adaptive Differential Evolution Algorithm
下载PDF
导出
摘要 为了提高基本差分进化算法的寻优速度和寻优效能,提出了一种改进的自适应差分进化算法(ADE)。在基本差分进化算法中引入了自适应变异算子,根据每个个体与最优个体适应度值的相互关系,自动地调节变异算子值,使之在进化初期较大,随着个体逐渐接近最优值,算子值逐渐变小,确保个体向最优值快速、稳定地逼近。在每一代变异、交叉和竞争之后,又增加了与随机新种群的竞争操作,使算法易于跳出局部最优点,以提高全局搜索能力。采用4个经典的测试函数对算法进行验证,结果显示:该算法的收敛速度与收敛精度在一定程度上优于基本差分进化算法,同时也优于基于代数进行自适应变异的差分进化算法。 By using a new adaptive mutation operator, this paper proposes a modified adaptive differential evolution (ADE) algorithm to improve the optimum speed and performance of the differential evolution algorithm. The mutation operator is adjusted by the relationship between every individualrs fitness and the best one's fitness. The value of mutation operator is bigger at the beginning of the evolutionary process and will become smaller as the individual tending the optimal solution so as to quickly and stably approximate the best individual. After every basic mutation, crossover and competition, a new competition with a random swarm is added so as to effectively jump out of the local optimum and enhance the ability of global search. The simulation results for four classic functions show that both the convergence speed and accuracy of ADE are significantly superior to the differential evolution (DE) algorithm and the adaptive differential evolution algorithm that is based on the generation.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期600-605,共6页 Journal of East China University of Science and Technology
基金 国家杰出青年科学基金(60625302) 国家973项目(2009CB320603) 高等学校博士学科点专项科研基金新教师基金项目(200802511011) 长江学者和创新团队发展计划(IRT0721) 高等学校学科创新引智计划(B08021) 上海市重点学科建设项目(B504)
关键词 差分进化 交叉 变异 竞争 自适应 differential evolution crossover mutation competition adaptive
  • 相关文献

参考文献15

  • 1Stornr P K. Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces [R]. Berkeley, USA:[s. n. ], 1995:22-25.
  • 2Srinivas M, Rangaiah G P. A study of differential evolution and tabu search for benchmark, phase equilibrium and phase stability problems [J]. Computers and Chemical Engineering, 2007,31 : 760-772.
  • 3Cheong F, Lai R. Designing a hierarchical fuzzy logic controller using the differential evolution approach [J]. Applied Soft Computing, 2007,7:481-491.
  • 4Rocha A C. Differential evolution algorithm applied to sidelobe level reduction on a planar array [J]. International Journal of Electronics and Communications, 2007,61:286-290.
  • 5Dass Konar A. An improved differential evolution scheme for noisy optimization problems[C]//Pattern recognition and machine intelligence. Berlin: Springer, 2005 : 417-421.
  • 6Tasoulis D K, Pavlidis N G, Plaglanakos V P. Parallel differential evolution [J]. Evolutionary Computation,2004(2): 2023-2029.
  • 7方强,陈德钊,俞欢军,吴晓华.基于优进策略的差分进化算法及其化工应用[J].化工学报,2004,55(4):598-602. 被引量:34
  • 8Efren Mezura-Montes. Saving evaluations in differential Evolution for constrained optimization [C]//Proceedings of the Sixth Mexican International Conference on Computer Science. Washington DC, USA: IEEE Computer Society, 2005: 274-281.
  • 9Wojciech Kwedlo, Krzysztof Bandurski. A parallel differential evolution algorithm for neural network training [C]//Proceedings of the International Symposium on Parallel Computing in Electrical Engineering. Berlin:Springer, 2006:1-6.
  • 10郑小霞,钱锋.一种改进的微粒群优化算法[J].计算机工程,2006,32(15):25-27. 被引量:23

二级参考文献121

共引文献458

同被引文献335

引证文献29

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部