期刊文献+

基于特征脸加权组合的人脸识别 被引量:2

Face Recognition Based on the Weighted Combination of Eigenface
下载PDF
导出
摘要 将基于主成分分析的特征脸人脸识别方法进行改进,以提高人脸识别率。首先利用主成分分析法提取人脸图像的特征脸,然后经图像重构得到二阶特征脸,最后将两种特征脸组合,构造组合特征,用三阶近邻法进行识别。在ORL人脸数据库上的试验结果表明,组合特征脸法用于人脸识别有较高的可行性和较好的稳定性,且在识别率上优于特征脸方法,准确率达到93.8%。 In order to increase face recognition rate,we improve the eigenface method of principal component analysis. Firstly principal component analysis method is used to extract the eigenface of initial images, and then we get the second-order eigenface images by rebuilding images.Lastly, we combine the two kinds of eigenface vectors of everyone into a longer vector, use third-order neighbor classifier to classify and identify the test images. To verify the efficient of the method, we test this method on ORL face database and experiment result shows that eigenface combination method for face recognition have high feasibility and good stability, and the recognition rate is better than eigenface method, the accuracy rate reach to 93.8%.
作者 程国 丁正生
出处 《商洛学院学报》 2009年第4期40-43,共4页 Journal of Shangluo University
基金 陕西省教育厅专项科研基金项目(05JK255)
关键词 主成分分析 特征脸 二阶特征脸 人脸识别 principal component analysis eigenface second-order eigenface face recognition
  • 相关文献

参考文献10

  • 1Maxim A,Grudin.On internal representations in face recogn ition systems[J].Pattern Recognition,2000,33(8):1161-1177.
  • 2Pentland A. Looking at people:sensing for ubiquitous and wearable computing [J].IEEE Trans Pattern A nol Machine Intel,2000,22(1): 107-119.
  • 3Pentland A, Mohandas B,Stamer T.View-based and monoc ular eigenspaces for face recongnition[C].IEEE Confon Computer Vision and Pattern Recongnition, 1994:84-91.
  • 4Turk M, Pentland A.Eigenface for Recognition[J].CogNeuro sis,1991,23(3):71-86.
  • 5WangL,TanT KExperimentsresultsoffacedescription based on the 2nd-order eigenfaces method[S].ISO/MPEG 6001, Geneva,2000-05.
  • 6Wang LTan T KA new proposal for face feature description [S].ISO/MPEG 6001,Noordwi kerhout,2000-05.
  • 7张晓红,汤晓华,沈晓红.基于Kernel PCA的人脸识别算法的探讨[J].北京工商大学学报(自然科学版),2008,26(3):37-39. 被引量:2
  • 8Olivetti insfitute.ORL facedatabase [DB/OL].1994-09-01 (2009-03-14)http://www.uk.researeh.att.con/facedatabas e.html.
  • 9Sun T, Neuvo Y.Detail-preserving median based fdters in image processing [J].Pattern Recognition, 1994,15:341-347.
  • 10徐春明,乐晓蓉,王正群.一种基于核主成分特征组合的人脸识别方法[J].计算机工程与应用,2006,42(3):76-78. 被引量:7

二级参考文献15

  • 1Pentland A.Looking at people:sensing for ubiquitous and wearable computing[J].IEEE Trans Pattern Anal Machine Intell, 2000 ; 22 ( 1 ) : 107-119.
  • 2Maxim A,Grudin.On internal representations in face recognition systems[J],Pattem Recognition,2000;33(8) :1161-1177.
  • 3Turk M,A PentIand.Face recognition using Eigenfaces[C].In:Proc IEEE Conf on Computer Vision and Pattern Recognltion,1991:586-591.
  • 4Pentland A,Moghaddam B,Starner T.View-based and mododular eigenspaces for face recognition[C].In :Proc IEEE Conf on Computer Vision and Pattern Recognition, 1994 : 84-91.
  • 5Wang L,Tan T K,Experiments results of face description based on the 2nd-order eigenfaces method[S].ISO/MPEG 6001 ,Geneva,2000-05.
  • 6Wang L,Tan T K,A new proposal for face feature description[S].ISO/ MPEG m6001 ,Noordwi kerhout,2000-05.
  • 7Kim Hyun-Chul,Kim Sung Daijin,Yang Bang et al.Face Recognition using the Second-order mixture-of-eigenfaces method[J].Pattem Recognition, 2004 ; 37 (8) : 337-349.
  • 8Schoelkopf B,Mika S,Burges C et al.Input space vs feature space in kernel-based methods[J].IEEE Trans Neural Networks, 1999, (10) :1000-1017.
  • 9Schoelkopf B ,Smola A,Robert Muller K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computer,1998;(10): 1299-1319.
  • 10Liu C J, Wechsler H. Evolutionary pursuit and its application to face recognition[J]. IEEE Tansactions on Pattern Analysis and Machine Intelligence, 2000, 22 ( 6 ) : 570 - 582.

共引文献7

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部