摘要
研究了非线性采样系统的稳定性问题.对以采样周期为参数的离散时间系统族,证明了全局指数稳定的Lyapunov定理和逆定理.分别基于系统的一般近似模型和Euler近似模型,给出了闭环系统全局指数稳定的新条件.与现有结果相比,取消了Lyapunov函数全局Lipschitz连续的假设,减弱了闭环系统全局指数稳定的充分条件.
Stability problem of nonlinear sampled-data systems is investigated. The Lyapunov theorem and its converse theorem of globally exponential stability for the discrete-time systems family in which the sampling period is a parameter are proved. New sufficient conditions that guarantee globally exponential stability of the closed-loop sampled-data systems are presented respectively for the general approximation model and the Euler approximation model. Compared with earlier results, new conditions ignore the assumption that Lyapunov functions are globally Lipschitz, and hence weaken the sufficient conditions to warrant globally exponential stability of the closed-loop systems.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2009年第8期821-826,共6页
Control Theory & Applications
基金
中国科学技术大学青年基金资助项目(KA2100100002)