期刊文献+

一种障碍环境下机器人路径规划的蚁群粒子群算法 被引量:42

Ant colony optimization and particle swarm optimization for robot-path planning in obstacle environment
下载PDF
导出
摘要 针对机器人在障碍环境下寻找最优路径问题,提出了一种障碍环境下机器人路径规划的蚁群粒子群算法.该方法有效地结合了粒子群算法和蚁群算法的优点,采用栅格法进行环境建模,利用粒子群算法的快速简洁等特点得到蚁群算法初始信息素分布,以减少迭代次数,加快算法的收敛速度;同时利用蚁群算法之间的可并行性,采用分布式技术实现蚂蚁之间的并行搜索,求解精度高等优点,求精确解.仿真实验结果证明了该方法的有效性,是机器人路径规划的一种较好的方法. For searching the best path for a robot in an obstacle environment, this paper proposes an algorithm of ant colony optimization(ACO) and particle swarm optimization(PSO) for path planning. The new algorithm effectively combines the advantages of ACO and PSO. It adopts the grid method for environment modeling and makes use of the efficiency and succinctness of PSO to obtain the initial distribution of pheromone, reducing the number of iterations and accelerating the convergence. At the same time, by using the parallelizability of ants and distributed parallelized-searching technology, the performance of the algorithm is effectively improved. The simulation result shows the effectiveness of the proposed algorithm in solving the problem of path planning.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第8期879-883,共5页 Control Theory & Applications
基金 河南省高校科技创新人才支持计划资助项目(2008HASTIT012) 新世纪优秀人才支持计划资助项目(NCET–08–0660)
关键词 路径规划 障碍环境 蚁群算法 粒子群算法 path planning obstacle environment ant colony optimization particle swarm optimization
  • 相关文献

参考文献8

  • 1李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来[J].机器人,2002,24(5):475-480. 被引量:343
  • 2ZHANG C G, XI Y G. Robot path planning in globally unknown environment on rolling windows[J]. Science in China, 2001, 44(2): 131 - 139.
  • 3孙树栋,曲彦宾.遗传算法在机器人路径规划中的应用研究[J].西北工业大学学报,1998,16(1):79-83. 被引量:78
  • 4DORIGO M, CARO G D. The Modified Swarm Optimization Metaheuristic[M] //COME D, MDORIGO, GLOVER F, Editors. New Ideas in Optimization. Mc London, UK: Graw Hill, 1999:11 - 32.
  • 5BONABEAU E, DORIGO M, THERAULAZ G. Swarm Intelligence: From Natural to Artificial Systems[M]. New York: Oxford University Press, 1999.
  • 6KENNEDY J, EBERHART R C. Particle Swarm optimization[C] IIIEEE International Conference on Neural Network. Perth, Australia: [s.n.], 1995.
  • 7SHI Y, EBERHART R C. A modified swarm optimizer[C] //IEEE International Conference of Evolutionary Computation. Anchorage, Alaska: [s.n.], 1998.
  • 8张美玉,黄翰,郝志峰,杨晓伟.基于蚁群算法的机器人路径规划[J].计算机工程与应用,2005,41(25):34-37. 被引量:46

二级参考文献18

共引文献455

同被引文献470

引证文献42

二级引证文献530

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部