期刊文献+

基于免疫机制的PSO算法中IIR数字滤波器设计

PSO Algorithm Based on Immune Mechanism for IIR Digital Filter Design
下载PDF
导出
摘要 针对微粒群算法(PSO)在搜索过程中粒子的多样性差,易陷入局部最优且收敛速度慢等缺陷,将生物免疫系统中克隆选择机制和独特型免疫网络理论引入到微粒群优化算法中,提出了一种基于免疫机制的PSO优化算法(PSOIM)并将其用于IIR数字滤波器的设计.该算法结合了微粒群算法的全局寻优能力和免疫多样性保持机制,改善了微粒群算法摆脱局部极值点的能力,提高了算法的收敛速度.仿真结果表明该算法在多模态搜索空间中具有更好的全局收敛性能和稳定性,是一种有效可行的IIR数字滤波器设计方法. Particle swarm optimization has poor diversity, slow convergence speed and is easy to trap into local optimum during the course of searching. Clonal selection mechanism and idiotypic immune network theory exhibited in biological immune system are introduced into particle swarm optimization algorithm, and the particle swarm optimization algorithm based on immune mechanism is proposed and is applied to the design of IIR digital filter. The proposed algorithms have both the properties of the original particle swarm optimization algorithm and the immune diversity keeping mechanism, and can improve the abilities of seeking the global optimum and evolution speed. The simulation results show that the proposed approach has preferable global convergent ability and stability in multi - modal search space, and is a feasible and high efficiency design method for IIR digital filter design.
作者 洪露 龚成龙
出处 《微电子学与计算机》 CSCD 北大核心 2009年第9期29-32,共4页 Microelectronics & Computer
基金 中国博士后科学基金项目 江苏省博士后基金项目(0901076C)
关键词 微粒群算法 免疫机制 多样性 早熟收敛 IIR数字滤波器 particle swarm optimization immune mechanism diversity premature convergence IIR digital filter
  • 相关文献

参考文献5

  • 1Ng S C, Leung S H, Chung CY. The genetic search approach: a new leaming algorithm for adaptive ⅡR filtering [J]. IEEE Signal Processing Magazine, 1996,13(6) .38 - 46.
  • 2Chen S, Istepanian R H, Luk B L. Digital ⅡR filter design using adaptive simulated annealing[J]. Digital Signal Processing, 2001,11 (3) : 241 - 251.
  • 3Kalinli A, Karaboga N. A new method for adaptive ⅡR filter design based on tabu search algorithm[J]. International Journal of Electronics and Communications, 2005,59 (2):111 - 117.
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [ C ]//Proceedings of the IEEE International Conference on Neural Networks. Piscataway, 1995:1942 - 1948.
  • 5谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422

二级参考文献34

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献421

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部