期刊文献+

钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响 被引量:35

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND
下载PDF
导出
摘要 以Ueshima的正六边形横断面枝晶模型为原型,采用有限差分方法建立了钢凝固过程伴随δ/γ相变的两相区溶质微观偏析模型,确立了在冷却速率为10℃/s非平衡凝固条件下钢的脆性温度区间,研究分析了各溶质元素在该温度区内的偏析特点及对脆性温度区间△θ_B与热应变的影响规律,定量计算了不同P,S含量下脆性温度区热应变随C含量的变化规律.揭示了P, S含量的增加使连铸坯出现表面纵裂纹几率提高的机理. The solidification of molten steel in continuous casting mold is a complicated nonequilibrium process with high cooling rate of 10-100 ℃/s. At such a cooling rate, the segregation of the solute elements such as C, Si, Mn, P and S in brittle temperature range (△θB) will vary with their initial contents and influence on the thermal strain significantly which could greatly increase the incidence of surface defects of strand. In this paper, a microsegregation model of solute elements in mushy zone with δ/y transformation during solidification was established based on the regular hexagon transverse cross section of dendrite shape proposed by Ueshima by finite difference method under the non-equilibrium solidification condition at 10 ℃/s of cooling rate and the brittle temperature range △θB was determined. The distribution characteristics of solute elements and the effect of their segregations on △θB and thermal strain were investigated. The results show that both P and S are the most serious segregation elements in final stage of solidification and affect on △θB significantly together with carbon content in molten steel. The mechanism that increasing contents of P and S may increase the probability of longitudinal surface crack for continuous casting strand was presented by calculating the change law of thermal strain with carbon content under different of P and S contents.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2009年第8期949-955,共7页 Acta Metallurgica Sinica
基金 新世纪优秀人才支持计划资助项目NCET-04-0285~~
关键词 连铸 微观偏析 表面纵裂纹 脆性温度区 热应变 continuous casting, microsegregation, longitudinal surface cracks, brittle temperature range, thermal strain
  • 相关文献

参考文献19

  • 1Konishi J, Militzer M, Brimacombe J K, Samarasekera I V. Metall Mater Trans, 2002; 33B: 413.
  • 2Thomas B G, Brimacombe J K, Samarasekera I V. Trans Iron Steel Soc AIME, 1986; 7:21.
  • 3Kim K, Han H N, Yeo T, Lee Y, Oh K H and Lee D N. Ironmaking Steelmaking, 1997; 24:249.
  • 4Kobayashi S, Nagamichi T, Gunji K. Trans Iron Steel Inst Jpn, 1988; 28:543.
  • 5Ueshima Y, Mizoguchi S, Matsumiya T, Kajioka H. Metall Mater Trans, 1986; 17B: 845.
  • 6Kim K, Yeo T, Oh K H, Lee D N. ISIJ Int, 1996; 36:284.
  • 7Suzuki M, Yamaoka Y. Mater Trans, 2003; 44:836.
  • 8Muojekwu C A, Samarasekera I V, Brimacombe J K. Metall Mater Trans, 1995; 2613:361.
  • 9Zhu Z Y, Wang X H, Wang W J, Zhang J M. In: The Chinese Society for Metals ed., Proceedings of Asia Steel International Conference, Beijing: Metallurgical Industry Press. 2000:358.
  • 10Suni J. PhD thesis, of Carnegie Mellon University, New York, 1991.

同被引文献318

引证文献35

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部