期刊文献+

基于改进PSO算法的自适应均衡算法

The Algorithm of Adaptive Equalization Based on Improved PSO Algorithm
下载PDF
导出
摘要 传统的自适应均衡算法存在收敛速度慢、稳定性差、均衡效果不理想等缺点,从而使自适应均衡器在高速光纤通信系统中的应用受到限制.具有梯度搜索因子的Grads-PSO算法,结合了传统数值优化方法在计算速度和计算精度上的优势,将梯度法引入粒子群算法中.在梯度搜索因子的指导下,PSO算法的运算过程显得更加有规则,从而提高了算法的收敛速度和运算精度.因此,本文提出将改进PSO算法用作自适应均衡器均衡算法.通过仿真实验表明,改进PSO算法具有收敛速度快,计算精度高的优点,将其作为自适应均衡器的控制算法可收到很好的均衡效果,优于传统的控制算法. The traditional adaptive equalization algorithm has some disadvantages, such as slow convergence, poor stability and bad equalization result. These disadvantages restricted the application of adaptive equalizer to the high-speed optical fiber communication systems. The grads particle swarm optimization algorithm that has grads search factor combined the advantages of the traditional numerical optimization methods in calculation speed and calculation accuracy. It introduced the grads method into the particle swarm optimization algorithm. Under the guidance of the grads search factor, the operation process of the particle swarm optimization algorithm is more regular, thereby the convergence speed and calculation accuracy of the algorithm has improved. An algorithm of adaptive equalization based on improved PSO algorithm was presented in this paper. The simulation experiments showed that the improved particle swarm optimization algorithm has many advantages, such as fast convergence, high calculation accuracy. The equalization result of improved particle swarm optimization algorithm is better than the traditional control algorithm.
出处 《河北工业大学学报》 CAS 北大核心 2009年第4期52-55,60,共5页 Journal of Hebei University of Technology
基金 河北省自然科学基金项目(F2008000116) 河北省教育厅自然科学基金项目(2009425)
关键词 粒子群优化算法 改进粒子群优化算法 自适应均衡 自适应均衡算法 光纤通信 particle swarm optimization algorithm improved particle swarm optimization algorithm adaptive equali zation adaptive equalization algorithm optical fiber communication
  • 相关文献

参考文献8

二级参考文献44

  • 1王俊伟,汪定伟.一种带有梯度加速的粒子群算法[J].控制与决策,2004,19(11):1298-1300. 被引量:45
  • 2龚岩栋,赵辉,简水生.光纤通信系统中减小PMD的几种途径[J].光纤与电缆及其应用技术,1996(5):17-22. 被引量:5
  • 3余燕平.数字微波无线通信系统中的中频自适应均衡器[J].浙江大学学报(自然科学版),1996,30(5):554-561. 被引量:1
  • 4孙即祥.现代模式识别[M].长沙:国防科技大学出版社,2003..
  • 5YANG H H,AMARI S,CICHOCHI A.Information theoretic approach to blind separation non-linear mixture[J].Signal Processing,1998,64(3):291-300.
  • 6TABLE A,JUTTEN C.Source separation in post nonlinear mixtures:an entropy-based algorithm[C]//Proc.of ICASSP.Seattle,Washington,1998.2089-2092.
  • 7TUGNAIT JITENDRA K.Adaptive blind separation of convolutive mixtures of indendent linear signals[J].Signal Processing,1999,73(7):139-152.
  • 8BUREL G.Blind separation of sources:a nonlinear neural algorithm[J].Neural Network,1992,5(6):937-947.
  • 9PAJUNEN P,HYVARINEN A,KARHUNEN J.Nonlinear blind souce separation by self-organizing maps[M]//In Progress in Neural Information Processing.New York:Springer-Verlag,1996.1207-1210.
  • 10KENNEDY J,EBERHART R C.Particle swarm optimization[C]//Proc.of IEEE International Conference on Neural Networks,IV[C].Piscataway,NJ:IEEE Service Center,1995.1942-1948.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部