期刊文献+

基于GA-BP网络混凝投药系统预测模型的研究 被引量:5

Study of Prediction Modelling of Coagulation Dosage Based on GA-BP Neural Networks
下载PDF
导出
摘要 针对BP网络建模易陷入局部极小、收敛速度慢等缺点,建立GA-BP网络预测模型,为混凝投药系统生产指导提供决策依据。利用遗传学习算法具有全局寻优的特点,同时优化BP网络的初始权值和网络结构,建立GA-BPNN混凝投药的预测控制模型。通过算法比较和模型仿真结果分析,GA-BP混合模型较BP模型收敛速度快,其平均预测相对误差仅为9.94%,预测精度远高于BP模型。表明GA-BP模型可以有效、可靠地用于混凝剂投加量预测控制系统的生产指导中。 Aimed at the shortages of the back propagation (BP)network modeling such as easily to fall into local minimum, slow convergence, ete, a GA-BP network prediction model was established to provide decision basis for production guidance of coagulation dosage system. By using the characteristics of global optimization of genetic algorithm ( GA), at the same time optimizing BP network' s initial weight and network structure, a predictive control model GABPNN was established for coagulation dosage. Through algorithm comparison and analysis of model simulation results, GA-BP hybrid model convergence speed is quicker than the BP model ;the average relative prediction error is only 9. 94% ,prediction accuracy is far higher than the BP model. The results show that the model has high prediction accuracy in the coagulation dosage and can be applied to the operating process.
出处 《化工自动化及仪表》 CAS 北大核心 2009年第2期75-78,共4页 Control and Instruments in Chemical Industry
关键词 混凝投药 预测控制 GA-BP模型 GA-BPNN模型 coagulant dosage predictive control GA-BP model GA-BPNN model
  • 相关文献

参考文献7

二级参考文献24

共引文献99

同被引文献56

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部