期刊文献+

基于结构风险最小化原则的径向基函数网络 被引量:3

Radial Basis Function Networks Based on Structural Risk Minimization Principle
下载PDF
导出
摘要 通过分析径向基函数网络与支持向量机之间的关系,将结构风险最小化原则应用于径向基函数网络学习中,与传统的基于经验风险最小化原则的径向基函数网络相比,它充分保证了模型的泛化能力,能够弥补学习方法本身的缺陷。最后,将该算法应用于非线性时间序列预测,并与传统的径向基函数网络预测结果进行了比较,实验结果表明本算法提高了径向基函数网络的泛化能力。 Applied the structural risk minimization (SRM) principle to the study of RBF networks by analyzing of the relationships between the radial basis function (RBF) networks and support vector machines ( SVM ). Compared with traditional RBF networks based on empirical risk minimization (ERM) principle, it fully assure model generalization and can remedy the shortcomings of single learning method. Finally, the proposed new algorithm was applied to non-linear time series forecast and was compared with the predicted outcome of traditional RBF networks. Experiments show that the proposed new algorithm imoroves the generalization ability of RBF networks.
出处 《化工自动化及仪表》 CAS 北大核心 2009年第3期34-37,共4页 Control and Instruments in Chemical Industry
基金 陕西省教育厅科学研究项目资助(07JK192)
关键词 结构风险最小化 径向基函数网络 神经网络 支持向量机 structural risk minimization RBF neural networks SVM
  • 相关文献

参考文献7

二级参考文献15

  • 1张立明.人工神经网络的模型及其应用[M].西安:上海:复旦大学出版社,1995..
  • 2Farber L A. Nonlinear Signal Processing Using Neural Network: Prediction and System Modeling. Technical Report, LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, USA, 1987.
  • 3Weigend A B, etal. Predicting the Future: A Connectionist Approach. International Journal of Neural System, 1990, 1:193-209.
  • 4Chakraborty K, et al. Forecasting the Behavior of Multivariate Time Series Using Neural Networks. Neural Networks, 1992,5(6): 961-970.
  • 5Lippmann R P. An Introduction to Computing with Neural Nets. IEEE Acoustics, Speech and Signal Processing Magazine,1987, 4(2): 4-22.
  • 6Cyberko G. Approximations by Super-Positions of a Sigmoidal Function. Mathematics of Control, Signals and Systems, 1989,2(2):34-89.
  • 7Cholewo T, Zurada J M. Sequential Network Construction for Time Series Prediction. In.. Proc of the IEEE International Joint Conference on Neural Networks. Housteon, USA, 1997, 2034-2039.
  • 8Goldberg D. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, USA:Addison-Wesley, 1989.
  • 9Vapnik V N.The Nature of Statistical Learning Theory[M].New York: Springer-Verlag,1995.
  • 10Cherkassky V,Mulier F.Learning Form Data:Conce-pts,Theory and Methods[M].New York:John Viley & Sons,1997.

共引文献2320

同被引文献15

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部