期刊文献+

最小二乘配置的QR分解解法 被引量:9

An algorithm of QR decomposition for least-square collocation
下载PDF
导出
摘要 为了解决最小二乘配置解算问题,采用QR分解解法建立了直接解算算法。分析了目前采用的最小二乘配置法解算方法,在讨论了矩阵的QR分解方法的基础上,推导得出了矩阵QR分解与广义逆矩阵的关系,得出了可以直接利用QR分解求解矩阵的最小二乘逆,并推导了应用QR分解求解最小二乘配置的估值计算公式和精度估算公式,最后通过重力异常实例进行了计算,得出矩阵的QR分解用于最小二乘配置解算的正确性和可行性。该成果为最小二乘配置法提供了一种新的解算方法。 In order to calculate the least square collocation model, a direct algorithm is proposed based on matrix QR decomposition. This paper overviews the various algorithms for least square collocation, discusses the matrix QR decomposition, derives the relationship between QR decomposition and generalized inverse matrix, and obtains least square inverse used for calculating matrix. In addition, the estimation formula for least square collocation by QR decomposition and its accuracy formula are derived. A case study is conducted using gravity anomaly test and calculation to demonstrate that the QR method is correct and valid in least-square collocation calculation. The method presented in this paper provides a new tool for least-squares collocation calculation.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2009年第4期550-553,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(40874010 40574008) 江西省自然科学基金资助项目(2007GZC0474) 江西省教育厅科技资助项目(赣教财2006[208]) 地球空间环境与大地测量教育部重点实验室开放基金资助项目(06-06) 数字国土江西省重点实验室开放基金资助项目(DLLJ200506)
关键词 最小二乘配置 矩阵分解 重力异常 least square collocation matrix decomposition gravity anomaly
  • 相关文献

参考文献7

二级参考文献18

  • 1李斐,岳建利,张利明.应用GPS/重力数据确定(似)大地水准面[J].地球物理学报,2005,48(2):294-298. 被引量:41
  • 2管泽霖 宁津生.地球形状及其外部重力场(上册)[M].北京:测绘出版社,1980..
  • 3刘经南 李建成 耿凤奎 等.海南高精度高分辨率大地水准面的确定基GPS网的确立课题研究报告[R].海南:海南大学理工学院,1998..
  • 4Schwarz K P. Data types and their spectral properties[R]. Proc Int Summer School Local Gravity Field Approximation. Beijing, 21 August-4 September, 1984:1-67.
  • 5Sanso F. Talk on the theoretical foundations of physical geodesy[A]. Paper presented at the 19th IUGG General Assembly[C]. Vancouver, 9-22 August, 1987.
  • 6Li Z. Multiresolution approximation in gravity field modelling[R]. UCGE Report 20103. Department of Geomatics Engineering,University of Calgary, 1996.
  • 7Keller W. Geoid computation by collocation in scaling space[A]. IAG Symp Proc. vol 119[C]. Springer, Berlin Heidelberg New York. 1998:176-182.
  • 8Kotsakis C. The multiresolution character of collocation[J], Journal of Geodesy, 2000,74:275- 290.
  • 9Moritz H. Advanced physical geodesy[M]. H. Wichmann verlag, Karlsruhe, Germany, 1980.
  • 10Keller W. A wavelet approach to non-stationary collocation[A]. In: Sehwarz(ed. ), Geodesy beyond 2000-The challenges of the first decade[C]. IAG Symposia. Berlin:Springer-Verlag, 2000, 121:208-213.

共引文献18

同被引文献39

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部