期刊文献+

面向对象影像分类中基于最大化互信息的特征选择 被引量:12

FEATURE SELECTION BASED ON MAXIMAL MUTUAL INFORMATION CRITERION IN OBJECT-ORIENTED CLASSIFICATION
下载PDF
导出
摘要 高分辨率影像面向对象分割后产生了大量的光谱、形状以及纹理特征,如何抽取出最佳特征子集是遥感影像识别的重要问题。本文利用最大化互信息统计独立准则抽取最优特征子集,提高了面向对象遥感影像分类精度。基本过程包含以下3个方面:首先,利用eCoginition软件对高分辨遥感影像进行对象分割;然后,基于互信息最大关联、最小冗余准则(mRMR)获取优选的特征子集;最后,基于支持向量机分类器完成影像分类。以福建省漳州市QuickBird数据为例的实验表明,该方法能够有效提高遥感影像的分类精度,平均误分率降低了约4%。 It is a key problem to select optimal features from the total set where spectral, geometric, shape, texture features and some other features are extracted by the process of image segmentation in object - oriented classification. In this paper, the authors present a method for selecting good features from object - oriented image segmentation according to the maximal statistical mutual information dependency criterion so as to improve the classification accuracy of high spatial resolution image. The proposed method is a three - step classification routine that involves the integration of (1) image segmentation with eCoginition software, (2) feature selection by mutual information minimum redundancy and maximum relevance criterion, and (3) support vector machine for classification. The experiment was conducted on QucikBird image in Zhangzhou city, Fujian province. Furthermore, the proposed method and the well - known feature selection methods such as Tabu search algorithm and fisher discriminate analysis are evaluated and compared with each other. The result shows that the mean error ratio decreases by 4% with the proposed method and that the proposed method for feature selection outperforms the other methods in terms of McNamara' s test.
出处 《国土资源遥感》 CSCD 2009年第3期30-34,共5页 Remote Sensing for Land & Resources
基金 国家自然科学基金(No:40801181) 福建省科技厅重点项目(No:2007Y0021) 教育部重大项目培育资金项目(No:706037)共同资助
关键词 互信息 特征选择 面向对象分类 高分辨 Mutual information Feature selection Object- oriented classification High spatial resolution image
  • 相关文献

参考文献12

  • 1Myint S, Lain N, Tylor J M. Wavelets for Urban Spatial Feature Discrimination : Comparisons with Fractal, Spatial Autocorrelation, and Spatial Cooccurrence Approaches[ J ]. Photogrammetric Engineering and Remote Sensing, 2004,70(7 ) :803 - 812.
  • 2Bruzzone L, Carlin L. A Multilevel Context - based System for Classification of Very High Spatial Resolution Images [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44 (9) : 2587 - 2600.
  • 3Definiens hnaging, eCognition Professional User Guide 4 [ M ]. Munich, Germany, 2003.
  • 4黄慧萍,吴炳方,李苗苗,周为峰,王忠武.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004,8(1):68-74. 被引量:127
  • 5曹凯,江南,吕恒,周连义,刘新.面向对象的SPOT 5影像城区水体信息提取研究[J].国土资源遥感,2007,19(2):27-30. 被引量:50
  • 6陈云浩,冯通,史培军,王今飞.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,31(4):316-320. 被引量:245
  • 7苏伟,李京,陈云浩,张锦水,胡德勇,刘翠敏.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J].遥感学报,2007,11(4):521-530. 被引量:113
  • 8Shashahani B M, Landgrebe D A. The Effect of Unlabeled Sampies in Reducing the Small Sample Size Problem and Mitigating the Hughes Phenomenon[J]. IEEE Trans. on Geoscience and Remote Sensing , 1994 ,32(5) :1087-1095.
  • 9Peng H, Long F, Ding C. Feature Selection Based on Mutual Information: Criteria of Max - dependency, Max - relevance, and Min -redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 8 ) : 1226 - 1238.
  • 10Hay G J, Blaschke T, Marceau D J, et al. A Comparison of Three Image - object Methods for the Muhiscale Analysis of Landscape Structure [ J ]. ISPRS Journal of Photogrammetry & Remote Sensing, 2003, 57: 327- 345.

二级参考文献48

共引文献518

同被引文献126

引证文献12

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部