期刊文献+

NONLINEAR FLEXURAL WAVES IN LARGE-DEFLECTION BEAMS 被引量:8

NONLINEAR FLEXURAL WAVES IN LARGE-DEFLECTION BEAMS
下载PDF
导出
摘要 The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained. The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.
出处 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期287-294,共8页 固体力学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.10772129 and 10702047).
关键词 large-deflection beam nonlinear flexural wave Jacobi elliptic function expansion large-deflection beam, nonlinear flexural wave, Jacobi elliptic function expansion
  • 相关文献

参考文献5

二级参考文献31

  • 1戴晖晖,刘曾荣.NONLINEAR TRAVELING WAVES IN A COMPRESSIBLE MOONEY-RIVLIN ROD I.LONG FINITE-AMPLITUDE WAVES[J].Acta Mechanica Sinica,2004,20(4):435-446. 被引量:5
  • 2郭建刚,周丽军,张善元.有限变形弹性杆中的几何非线性波[J].应用数学和力学,2005,26(5):614-620. 被引量:14
  • 3刘志芳,张善元.圆杆波导中的一个非线性波动方程及准确周期解[J].物理学报,2006,55(2):628-633. 被引量:10
  • 4朱位秋.弹性杆中的非线性波[J].固体力学学报,1980,1(2):247-253.
  • 5ZHANG Shan-yuan,ZHUANG Wei. The strain solitary waves in a nonlinear elastic rod[ J ].Acta Mechanica Cinia, 1987,1 (3) :62-72.
  • 6ZHANG Shan-yuan,GUO Jian-gang, ZHANG Nian-mei. The dynamics behaviors and wave properties of finite deformation elastic rods with viscous or geometrical-disporsive effects[A]. In:ICNM-Ⅳ[ C],Shanghai, Aug 2002,728-732.
  • 7Whitam G B. Linear and Nonlinear Waves[M].New York: John Wiley & Sons, 1974, 96-113.
  • 8Bhatnager P L. Nonlinear Waves in One-Dimensional Dispersive System [ M ]. Oxford: Clarendon Press, 1979,61-88.
  • 9Alexander M S. Strain Solitons in Solid and How to Construct Them [ M]. New York: Chapman &Hail/CRC, 2001, 1-198.
  • 10张善元 杨绍瑞.非线性弹性细杆中的定常波[J].太原理工大学学报,1985,1(4):33-43.

共引文献24

同被引文献32

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部