期刊文献+

基于多维特征参数优化的山羊绒鉴别技术 被引量:6

The Identification Technique for Cashmere Based on Optimization of Multi-dimensional Characteristic Parameters
下载PDF
导出
摘要 利用显微镜鉴别山羊绒是目前行之有效的方法之一,但由于类山羊绒的不断出现和山羊绒鳞片结构的变异,山羊绒与类山羊绒的鳞片鉴别特征参数相互交叉,用单独的参数相互比较易产生误判.用多维模糊C均值聚类(FCM)分析方法,将羊绒纤维鉴别特征参数按纤维直径分为7个比对(聚类)中心;按不同的权重将多维的单独参数优化成一个综合指标;通过比较综合指标与聚类中心的距离判别纤维类属.山羊绒与细羊毛及山羊绒与牦牛绒鉴别的两个实例,证明了这一分析方法,可用来验证初步判别的可信度,降低山羊绒鉴别的误判率. There is one of effective methods to identify the cashmere by means of microscope. But the faulty identification may exist by comparing with single and individual parameter because of the emerging of similar cashmere and the scale structure variation of the cashmere, also there are some overlapping scale features between cashmere and similar cashmere. Now based on multi-dimensional fuzzy clustering means (FCM), the characteristic parameters of cashmere identification can be grouped into 7 comparison groups (clusters)according to the fiber's diameter. The multi-dimensional single and individual parameter may be optimized to a combined index on the basis of the weightings. The {iber category can be identified by comparing with the combination index and the distance between clusters. Two examples: the identification between cashmere and fine wool and the identification between cashmere and yak, can prove this analytic method which may be used to verify the credibility of the initial identification, and to reduce the faulty identification possibility of cashmere.
作者 杨乐芳
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期424-429,共6页 Journal of Donghua University(Natural Science)
关键词 多维 特征参数 优化 山羊绒 鉴别 mufti-dimensional characteristic parameters optimization cashmere identification
  • 相关文献

参考文献8

二级参考文献7

共引文献27

同被引文献58

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部