期刊文献+

分离式变压器电磁结构与参数分析 被引量:9

Electromagnetic structure and parameter analysis of separated transformer
下载PDF
导出
摘要 为提高松耦合感应电能传输系统的传输能力,对系统的核心部件——分离式变压器的结构特点及参数进行研究。在分析松耦合变压器的互感等效电路模型的基础上,对电路的开路输出电压、励磁电流等变量进行分析,建立其与自感系数、互感系数、耦合系数等结构参数的关系,并分析了电路的阻抗特性与传输效率。通过仿真与实验,研究了系统的变量与磁芯间隙、系统频率之间的关系。为提高分离式变压器的耦合系数,对3种磁芯线圈结构进行参数测量,获得变压器的最优结构。仿真与实验结果表明,磁芯间隙不仅降低了线圈的耦合系数,且降低了励磁电感,需通过提高系统工作频率来抑制励磁电流,提高系统传输效率;通过优化磁芯线圈结构及磁芯间隙可提高系统传输能力和稳定性。 To improve the transmission capability of IPT(Inductive Power Transmission) system,the structure and parameters of separated transformer ,the key part of system, are investigated. Based on the analysis of its equivalent mutual circuit model ,some of its variables, such as open- circuit output voltage and magnetizing current,are explored. Its relationship with the structural parameters is established,such as self-inductance,mutual inductance and coupling coefficient. Its impedance characteristic and transmission efficiency are analyzed. The relationships among system variable ,magnetic core gap and system frequency are researched by simulation and experiment. To improve the coupling coefficient of separated trans- former,the structural parameters are measured for three kinds of magnetic core windings to obtain the optimal structure. Results of experiment and simulation show that,the core gap decreases both the magnetizing inductance and the coupling coefficient. The operating frequency should be increased to limit the magnetizing current and improve the transmission efficiency. The system capability and stabi- lity can be improved by optimizing the magnetic core winding structure and the core gap.
出处 《电力自动化设备》 EI CSCD 北大核心 2009年第9期141-144,共4页 Electric Power Automation Equipment
基金 国家自然科学基金重点资助项目(50575157)~~
关键词 感应电能传输 电磁感应 分离式变压器 耦合系数 励磁电感 inductive power transfer electromagnetic induction separated transformer coupling coefficient magnetizing inductance
  • 相关文献

参考文献15

  • 1SERGEANT P,ven den BOSSCHE A. Inductive coupler for contactless power transmission[J]. IET Electr Power Appl,2008,2(1) : 1-7.
  • 2武瑛,严陆光,徐善纲.新型无接触能量传输系统[J].变压器,2003,40(6):1-6. 被引量:62
  • 3武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66. 被引量:117
  • 4马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报,2005,20(10):66-71. 被引量:32
  • 5孙跃,王智慧,戴欣,苏玉刚,李良.非接触电能传输系统的频率稳定性研究[J].电工技术学报,2005,20(11):56-59. 被引量:112
  • 6AYANO H,NAGASE H,INABA H. A highly efficient contactless electrical energy transmission system [J]. Electrical Engineering in Japan,2004,148(1):66-74.
  • 7JUNJI H. Study on intelligent battery charging using inductive transmission of power and information[J]. IEEE Trans on Power Electric, 2000,15 (2) : 335 - 345.
  • 8WANG C S,STIELAU O H,COVIC G A. Design consideration for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics,2005,52(5) : 1308-1314.
  • 9GREEN A W,BOYS J T. An inductively coupled high-frequency power system for materials handling application[C]//IPEC Conf. Singapore : [s.n.] 1993 : 821 - 826.
  • 10KLONTZ K W,DIVAN D M,NOVOTNY D W,et al. Contactless power delivery system for mining applications[J]. IEEE Trans on Industry Applications,1995,31(1):27-35.

二级参考文献29

  • 1Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies. Proceedings of IEEE Power System Technology International Conference, Perth (Australia), 2000, 1: 327~332.
  • 2Chwei-Sen Wang, Covic G A, Stielau O H. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems. In: Proceedings of IEEE Industrial Electronics Society Conference, Seattle (USA), 2001, 2: 1049~1054.
  • 3Pedder D A G, Brown A D, Skinner J A. A contactless electrical energy transmission system. IEEE Trans on Industrial Electronics. 1999,46(2):23~30.
  • 4Hu A P, Boys J T. Dynamic ZVS direct on-line start up of current fed resonant converter using initially forced DC current. Proceedings of IEEE International Symposium on Industrial Electronics, Puebla (Mexico), 2000, 1: 312~317.
  • 5Hayes J G, O'Donovan N. Inductance characterization of high-leakage transformers. In: Proceedings of 2003 IEEE Applied Power Electronics Conference and Exposition, Miami (FL. USA), 2003, 2: 1150~1156.
  • 6onseok Lim, Jaehyun Nho, Byungcho Choi, et al. Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device. Proceedings of IEEE Power Electronics Specialists Conference, Cairns (Australia), 2002,2: 579~584.
  • 7Boys J T, Covic G A. Stability and control of inductively coupled power transfer systems. Proceedings of IEE Electric Power Applications, Stevenage (Engl.),147: 37~43.
  • 8Chwei-Sen Wang, Stielau O H, Covic G A. Load models and their application in the design of loosely coupled inductive power transfer systems. Proceedings of IEEE Power System Technology International Conference, Perth (Australia), 2000, 2: 1053~1058.
  • 9Green A W, Boys J T. 10kHz inductively coupled power transfer-concept and control. Proceedings of IEE Power Electronics and Variable-speed Drivers International Conference, London (UK), 1994, 399: 694~699.
  • 10Hu A P, Chen Z J, Hussmann S, et al. A dynamically on-off controlled resonant converter designed for coal mining battery charging applications. Power System Technology, 2002, 2:1039-1044.

共引文献274

同被引文献84

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部