期刊文献+

用功的互等定理求解三角形板的固有频率 被引量:2

Reciprocal Theorem of Work Done for the Solution of Natural Frequency of Triangular Plate
下载PDF
导出
摘要 针对具有复杂边界条件的板的弯曲和振动问题,利用薄板自由振动微分方程与薄板弹性曲面微分方程在形式上和力学上的相似性,基于虚功原理,将薄板振动问题的惯性力视为薄板弯曲问题的横向载荷,将功的互等定理用于求解动力学问题,得到薄板固有频率公式.通过设定合适的振型函数,用功的互等定理、映像法和叠加法,求出简支等腰直角三角形板和等边三角形板的固有频率.采用静力学方法和功的互等定理求解动力学问题很容易得到推广.该方法非常简单,精度较高,是求解结构固有频率的一种好方法. Based on the principle of virtual work and the differential equation similarity of the free vibration to the elastic curved surface of sheet in both expression and mechanics, the inertia force due to sheet vibration is regarded as the transverse load to bend the sheet, and the reciprocal theorem of work done is used to solve the dynamic problem, thus obtaining the formula of natural frequency of sheet. Setting an appropriate vibration mode shape function, the natural frequency of simply-supported sheet in shape of isosceles right triangle or equilateral triangle is solved via the reciprocal theorem of work done, mapping and superposition. The method combining statics with the reciprocal theorem of work done to solve dynamic problems is easy to extend, and it is simple with high accuracy in solving the natural frequancy of a structure.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期1365-1368,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2006AA04Z408)
关键词 薄板 功的互等定理 固有频率 振型函数 动力学 thin plate reciprocal theorem of work done natural frequency mode shape function dynamics
  • 相关文献

参考文献10

  • 1Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells[M]. New York: MeGraw-Hill, 1959:1 - 470.
  • 2Timoshenko S, Young D H, Weaver W, Jr. Vibration problems in engineering [ M]. New York: John Wily & Interscience, 1974.
  • 3Simpson A. On the oscillatory motion of translation elastic cables[J]. Journal of Sound and Vibration, 1972,20(2) : 177 - 189.
  • 4Irvine H M. Cable structures[M]. London: The Mit Press, 1981.
  • 5Takahashi K, Konishi Y. Non-linear vibrations of cables in three dimensions, part I : non-linear free vibration [ J ]. Journal of Sound and Vibration, 1987,118 ( 1 ) : 69 - 84.
  • 6Benedetmini F, Rege G. Non-linear dynamics of an elastic cable under planar excitation[J ]. International Journal of Non-linear Mechanics, 1987,22(6) :497 - 506.
  • 7Warnitchai P, Fujino Y, Susumpow T. A non-linear dynamic model for cable and its application to a cablestructure system [ J ]. Journal of Sound and Vibration, 1995,187(4) :695 - 712.
  • 8Hung C F, Hsu R Y, Hwang-Fuu J J. Elastic shock response of an air-backed plate to under water explosion [ J ]. International Journal of Impact Engineering, 2005,31 (2) : 151 - 168.
  • 9Mazumdar J. A review of approximate methods for determining the vibrational modes of membranes [ J ]. The Shock and Vibration Digest, 1975,7 (1):75- 88.
  • 10曹志远.板壳振动理论[M].北京:高等教育出版社,1987:233-236.

同被引文献11

  • 1杨少红,章向明,曾晓玲.改造材料力学实验室,提高实验教学效果[J].实验室研究与探索,2006,25(12):1608-1610. 被引量:10
  • 2Heywood R B. Designing by photoelasticity [ M ]. New York : McGraw-Hill, 1982 : 296 - 299.
  • 3Timoshenko S, Woinowsky-Krieger. Theory of plates and shells [ M ]. New York : MeGraw-Hill, 1959 : 1 - 270.
  • 4Ferreira A J M. A formulation of the multiquadric radial composite plates [ J ]. Composite Structures, 2003, 59 (3) : 385 - 392.
  • 5Reddy J N. A simple higher-order theory for laminate com- posite plates[J]. Journal of Applied Mechanics, 1984,51 (6) : 745 - 752.
  • 6Pagano N J. Exact solution for rectangular bidirectional composites and sandwich plates [ J 1. Journal of Composite Materials, 1970,4( 1 ) : 20 - 34.
  • 7Henshaw J M, Sorem J R, Glaessgen E H. Finite element analysis of ply-by-ply and equivalent stress concentrations in composite plates with multiple holes under tensile and shear loading[ J]. Composite Structures, 1996, 36 ( 1 ) : 45 - 58.
  • 8Jain N K, Mittal N D. Finite element analysis for stress concentration and deflection in isotropic, orthotropic and laminated composite plates with central circular hole under transverse static loading[ J. Materials Science and Engi- neering A, 2008, 498(2) : 115 - 124.
  • 9曲焱喆,盖秉政.多孔有限大弹性薄板弯曲应力集中问题[J].应用力学学报,2008,25(2):198-201. 被引量:8
  • 10杨贺,邓宗白,杜文超.基于研究性实验的多功能组合式力学实验系统[J].力学与实践,2012,34(6):70-74. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部