期刊文献+

基于最小生成树的LAPLACE谱图像匹配算法 被引量:4

Laplacian Spectrum Image Matching Algorithm Based on Minimum Spanning Tree
原文传递
导出
摘要 提出了一种基于最小生成树的Laplace谱图像匹配算法。首先分别对两幅待匹配图像的特征点集构造完全图,其次寻找最小生成树,然后通过各自的最小生成树构造Laplace矩阵,接下来进行分解并利用分解结果构造匹配矩阵,最后通过匹配矩阵实现两幅图像匹配。实验验证了该算法能够降低匹配的时间复杂度和获得较高的匹配精度。 A Laplacian spectrum image matching algorithm based on minimum spanning tree was proposed. Firstly, a complete graph was constructed according to the feature points of two related images respectively, and then minimum spanning tree in each complete graph was searched. Secondly, a Laplacian matrix for minimum spanning tree was constructed respectively. Thirdly, the Laplacian matrices were decomposed respectively and then a matching matrix denoting the matching degree among feature points was constructed by using the results of the decomposition. Finally, the matching feature points of the two images were obtained according to the matching matrices. Experimental results indicate that the given algorithm can decrease matching time complexity and possess the higher matching accuracy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第17期5481-5485,共5页 Journal of System Simulation
基金 国家自然科学基金(10601001 60772121) 安徽省自然科学基金(070412065) 安徽省教育厅自然科学研究项目(2006KJ030B 2008B024)
关键词 图论 LAPLACE谱 最小生成树 图像匹配 graphic theory Laplace spectrum minimum spanning tree image matching
  • 相关文献

参考文献19

  • 1Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Contexts [J]. IEEE Trans on Pattern Analysis and Machine Intelligence (S0162-8828), 2002, 24(4): 509-522.
  • 2Myers Richard, Hancock Edwin R. Least-commitment Graph Matching with Genetic Algorithms [J]. Pattern Recognition (S0031- 3203), 2001, 34(2): 375-394.
  • 3李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 4Soctt G L, Longuet-Higgins H C Features of Two Images [C] // An Algorithm for Associating the Proc. Roy. Soc. London Ser. B (Biological) (S0962-8452). London, UK: Royal Society of London, 1991, 244: 21-26.
  • 5Shapiro L S, Brady J M. Feature-based Correspondence: an Eigenvector Approach [J]. Image and Vision Computing (S0262- 8856), 1992, 10(5): 283-288.
  • 6Pilu M. A Direct method for Stereo Correspondence Based on Singular Value Decomposition [C]// IEEE Conferece on Computer Vision and Pattern Recognition, 1997. USA: IEEE, 1997: 261-266.
  • 7Mohar B. Some Applications of Laplace Eigenvalues of Graphs [M]. Graph Symmetry (Hahn G, Sabidussi G. eds.). Dordrecht, Germany: Kluwer Academic Publishers, 1977: 225-275.
  • 8Merris R. Laplacian Matrices of Graphs: a Survey [J]. Linear Algebra and Its Applications (S0024-3795), 1994, 197(1): 143-176.
  • 9Chung F R K. Spectral Graph Theory [M]. Providence, Rhode Island, USA: American Mathematical Society, 1997.
  • 10王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32

二级参考文献29

  • 1裴韬.中国及邻区大型地震数据库时空特征分析及其方法研究:博士后出站报告[M].北京:中科院地理所,2000.23.
  • 2X Wen, S Fuhrman, G S M D B Carr et al. Large-scale temporal gene expression mapping of central nervous system development. The National Academy of Science, NW, 1998.
  • 3M B Eisen, P T SpeUman, P O Brown et al. Cluster analysis and display of gene-wide expression patterns. The National Academy of Science, NW, 1998.
  • 4R Herwig, A J Poustka, C Miiller et al. Large-scale dustering of eDNA-fingerprinting data, The National Academy of Science, NW, 1999.
  • 5P Tamayo, D Slonim, J Mesirov et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. The National Academy of Science, NW, 1999.
  • 6Jiawei Huan, Micheline Karnber. Data Mining: Concept and Techrfiques. San Mateo, CA: Morgan-Kaufmann, 2000.
  • 7Ying Xu, Victor Olrnan, Dong Xu. Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees, Bioinformatics, 2001, 18(2): 1-10.
  • 8K M Ramonel, B Zhang, R Ewing et al. Microarray analysis of chitin elicitation in arabidopsis thaliana. Molecular Plant Pathology, 2002, 3(5): 301-305.
  • 9Y Xu, V Olman, E C Ubacher. A segmentation algorithm for noisy images: Design and evaluation. Pattern Recognition Letters, 1998, 19(13): 1213-1224.
  • 10G Sherlock. Analysis of large-scale gene expression data. Briefingsin Bioinformatics, 2001, 2(4): 350-362.

共引文献164

同被引文献40

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部