期刊文献+

基于模态代表点的聚类评价方法

New clustering validity index based on modal representatives
下载PDF
导出
摘要 提出了一种新的聚类评价方法,该方法以聚类的代表点表示法为基础,在经典方法上做出了改进。首先将聚类结果对应于模态逻辑中Kripke结构;然后利用模态逻辑中语法与语义之间的对应性选取了相应的公理系统。通过公式之间的蕴涵关系,选择一组极少的数据点来表示聚类结果的各种信息,形成聚类的模态代表点。在此基础上,给出了相应的聚类评价方法。这种方法除了可以评价聚类结果的优劣,还可以分析出簇的形态。实验表明,与一些常用聚类评价指标相比,这种评价方法更具通用性。 A new clustering validity index based on the improved classic method of representatives is presented. First of all, the clustering result is corresponding to the Kripke structure. The relevant system of axioms is chosen by the correspondence between the syntax and semantics of modal logic. Furthermore, a minimal data set which can describe all clustering information is constructed by the implication during formulas. Finally, the validity index is calculated based on the above set. In addition to the validity of a clustering result, this method can also show the structure information of each cluster. Experiments show that this new index has more universal than the current clustering vatiditv indexes.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第8期1997-2002,共6页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2006AA12A106)资助课题
关键词 数据挖掘 聚类评价 代表点 模态逻辑 data mining clustering validity representatives modal logic
  • 相关文献

参考文献15

  • 1Yang Xulei, Song Qing, Cao Aize. A new cluster validity for data clustering[J]. Neural Processing Letters, 2006, 23(3) :325 - 344.
  • 2Lu Zonglei, Wang Jiandong, Zai Yunfeng. A new technology for combining small samples based on clustering and its applications[C] ff Proc. of the International Symposium on Kncruledge Acquisition and Modeling. Wuhan, China: IEEE CS Press, 2008:735-740.
  • 3Lu Zonglei, Wang Jiandong, Zheng Guansheng. A new method to alarm large scale of flights delay based on machine learning [C]// Proc. of the International Symposium on Knowledge Acquisition and Modeling. Wuhan, China~ IEEE CS Press, 2008:589 - 592.
  • 4Kovacs Ferenc, Legany Csaba, Babos Attila, Cluster validity measurement techniques [C]//Proc. of the 6tk International Symposium of Hungarian Researchers on Computational Intelligence, 2005.
  • 5张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 6Greene Derek, Cunningham Padraig. Producing accurate interpretable clusters from high-dimensional data [R]. Department of Computer Science, Trinity College Dublin, 2005.
  • 7Guha Sudipto, Rastogi Rajeev, Shim Kyuseok. CURE: an efficient clustering algorithm for large databases[C] ff Proc. of ACM SIGMOD International Conference on Management of Data. Nezw York,1998:73 - 84.
  • 8Hughes G E, Cresswell M J. A new introduction to modal logic [M]. Routledge, London and New York, 1996.
  • 9Witten I H, Frank E. Data mining: practical machine learning tools and techniques[M]. Lean Francisco : Morgan Kau frnann , 2005.
  • 10吕宗磊,王建东,李莹,宰云峰.一种基于模态逻辑的聚类结果评价方法[J].计算机研究与发展,2008,45(9):1477-1485. 被引量:5

二级参考文献32

  • 1石陆魁,何丕廉.一种基于密度的高效聚类算法[J].计算机应用,2005,25(8):1824-1826. 被引量:21
  • 2刘泉凤,陆蓓.数据挖掘中聚类算法的比较研究[J].浙江水利水电专科学校学报,2005,17(2):55-58. 被引量:9
  • 3张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 4Bilmes J, Vahdat A, Hsu W. Empirical Observations of Probabilistic Heuristics for the Clustering Problem[R]. Technical Report TR-97-018, International Computer Science Institute, University of California, Berkeley, CA, 1997
  • 5Larsen B, Aone C. Fast and Effective Text Mining Using Linear-time Document Clustering. KDD-99, San Diego, California, 1999:16-22
  • 6Rand W. Objective Criteria for the Evaluation of Clustering Methods[J]. Journal of the American Statistical Association, 1971,66(336): 846-850
  • 7Cerney M M. A Comparison of Roles of Univariate and Three-demensional Anthropometric Data in the Description of Form. http://www.vrac.iastate.edu/~mecerney/HFES03-MelindaCerney-paper. PDF
  • 8Halkidi M, Vazirgiannis M, Batistakis I. Quality Scheme Assessment in the Clustering Process. http://www.db-net.aueb.gr/courses/post grdb/ cl_eval.pdf
  • 9Dunn J. Well Separated Clusters and Optimal Fuzzy Partitions[J]. Journal of Cybernetics, 1974, 4(1):95-104
  • 10Pal N, Biswas J. Cluster Validation Using Graph Theoretic Concepts [J]. Pattern Recognition, 1997,30(6): 847-857

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部