摘要
假设Ω满足一定的正则性条件,则Marcinkiewicz积分μΩ(f)(x)=∫0∞FΩ,t(x)2td3t1/2在Campanato空间上是有界的.这里FΩ,t(x)=∫|x-y|≤tΩx(-x-yyn)-1f(y)dy.
The boundedness is considered for Marcinkiewicz integrals with rough kernel which is defined by μΩ(f)(x)=(∫0^∞|FΩ,t(x)|^2dt/t^3)1/2,whereFΩ,t(x)=∫|x-y|≤tΩ(x-y)/|x-y|^n-1f(y)dy.A regularity condition on Ω is given,which implies that μΩ(f) is bounded on Companato spaces.
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2009年第4期11-14,共4页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(10571014)
甘肃省教育厅科研资助项目(0701-15)