期刊文献+

粗糙核Marcinkiewicz积分在Companato空间上的有界性 被引量:5

Boundedness of Marcinkiewicz integrals with rough kernel on Companato spaces
下载PDF
导出
摘要 假设Ω满足一定的正则性条件,则Marcinkiewicz积分μΩ(f)(x)=∫0∞FΩ,t(x)2td3t1/2在Campanato空间上是有界的.这里FΩ,t(x)=∫|x-y|≤tΩx(-x-yyn)-1f(y)dy. The boundedness is considered for Marcinkiewicz integrals with rough kernel which is defined by μΩ(f)(x)=(∫0^∞|FΩ,t(x)|^2dt/t^3)1/2,whereFΩ,t(x)=∫|x-y|≤tΩ(x-y)/|x-y|^n-1f(y)dy.A regularity condition on Ω is given,which implies that μΩ(f) is bounded on Companato spaces.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2009年第4期11-14,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10571014) 甘肃省教育厅科研资助项目(0701-15)
关键词 粗糙核 MARCINKIEWICZ积分 Companato空间 rough kernel Marcinkiewicz integral Companato space
  • 相关文献

参考文献3

二级参考文献12

  • 1徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性——本构模型[J].岩土力学,1993,14(4):1-15. 被引量:22
  • 2陈冬香,陈杰诚.带粗糙核的Marcinkiewicz积分算子在Herz空间的有界性(英文)[J].数学进展,2005,34(5):591-599. 被引量:18
  • 3Stein E M. On the function of Littlewood-Paley, Lusin and Marcinkiewicz[J]. Trans Amer Math Soc, 1958, 88:430.
  • 4Hormander L. Estimates for translation invariant operators in L^p spaces[J]. Acta Math, 1960, 104:93.
  • 5Sakamoto M, Yabuta K. Boundedness of Marcinkiewicz functions[J]. Studia Math, 1999, 135:103.
  • 6Calderon A P, Zygmund A. On a problem of Mihlin[J]. Trans Amer Math Soc, 1955, 78:209.
  • 7Ding Yong, Lin Qincheng, Shao Shuanglin. On the Marcinkiewicz integral with variable kernels[J]. Indiana Univ Math J, 2004, 53(3):805.
  • 8Xue Qingying, Yabuta K. L^2-Boundedness of Marcinkiewicz integrals along surfaces with Variable Kernels[J]. Sci Math Japonicae Online, 2006, e:269.
  • 9Fefferman R, Soria F. The weak space HI[J]. Studia Math, 1987, 85:1.
  • 10Ding Yong, Xue Qingying, Yabuta K. Existence and boundedness of parameterized Marcinkiewicz integral with rough kernel on Companato spaces[J]. Nagoya Math J, 2006, 181:103.

共引文献103

同被引文献23

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部