期刊文献+

基于信息熵理论的高速IPv6网络流量抽样测量方法 被引量:5

Information entropy theoretic approach to traffic sampling measurement in high-speed IPv6 networks
下载PDF
导出
摘要 基于信息熵的理论提出了一种大规模、高速IPv6网络流量抽样测量方法,对实际IPv6网络流量数据进行了统计分析,比较了IPv6数据报文头的各个字段比特位的随机性,选择出随机性好的字段作为抽样的匹配字段输入,满足了抽样样本的随机性要求。通过软件编程实现了该抽样测量方法,并抽样采集了实际IPv6网络流量,实验数据表明其结果具有良好的均匀性,且总体和样本的数据报文大小的分布函数曲线吻合。 A novel traffic sampling measurement method in high speed IPv6 networks is proposed. The method is to sample IPv6 traffic based on the information entropy theory. Firstly, we present a distributed IPv6 network sampling measurement framework including communication and sampling modules. Secondly, through computing the bit entropy in real IPv6 traffic traces, we discuss the randomicity of each byte in lPv6 packet headers, and select those bytes having a good randomicity as the input of our traffic sampling method. Finally, an experiment is performed to prove that the output of our method has sufficiently uniform and the sample's curve of cumulative distribution function of packet size is fully conformed to the parent's.
作者 潘乔 裴昌幸
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第5期1337-1341,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60572147 60132030) 陕西省科技攻关项目(2006k04-G33)
关键词 计算机应用 网络流量 抽样测量 信息熵 哈希函数 高速网络 computer application network traffic sampling measurement entropy hash function highspeed networks
  • 相关文献

参考文献7

  • 1Claffy K C, Polyzos G C, Braun H W. Application of sampling methodologies to network traffic characterization[J]. ACM SIGCOMM Computer Communication Review, 1993, 23 (4): 194-203.
  • 2Paxson V, Almes G, Mahdavi J, et al. RFC2330 [DB/OL]. [2007-01-05]. http: //www. ietf. org/ rfc/rfc2330.
  • 3Duffield N. Sampling for passive internet measurement: a review[J]. Statistical Science, 2004, 19 (3):472-498.
  • 4Deering S, Hinden R, RFC2460[DB/OL]. [2007- 01-05]. http://www, ietf. org/rfc/rfc2460.
  • 5程光,龚俭,丁伟.基于分组标识的网络流量抽样测量模型[J].电子学报,2002,30(12A):1986-1990. 被引量:16
  • 6WIDE 6bone project. Daily trace[DB/OL]. [2006- 12-12]http://tracer. csl. sony. co. jp/mawi.
  • 7Zseby T, Fokus F, Molina M, et al. Sampling and filtering techniques for IP packet selection[DB/OL]. [2006-12-12]. http://www, ietf. org/internet drafts/draft-ietf-psamp-sample-tech- 10. txt.

共引文献15

同被引文献44

  • 1张峰,雷振明.基于泊松分布的报文抽样性能衡量[J].北京邮电大学学报,2005,28(2):34-38. 被引量:4
  • 2刘烃,郑庆华,管晓宏,陈欣琦,蔡忠闽.IPv6网络中蠕虫传播模型及分析[J].计算机学报,2006,29(8):1337-1345. 被引量:9
  • 3张蕾,吴文玲.SMS4密码算法的差分故障攻击[J].计算机学报,2006,29(9):1596-1602. 被引量:67
  • 4潘乔,裴昌幸.用于高速IPv6网络流量抽样测量的算法[J].西安电子科技大学学报,2007,34(3):377-381. 被引量:2
  • 5盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2008:276-281.
  • 6Mirkovic J, Reiher P. A Taxonomy of DDoS attack and DDoS defense mechanisms [J] ACM SIG- COMM Computer Communications Review, 2004, 34(2) : 39-53.
  • 7Lawniczak A T, Wu H, Di Stefan B N. Detection of anomalous packet traffic via entropy[C] // Proceed ings of the 22nd IEEE Canadian Conference on Elec trical and Computer Engineering, Canada, 2009: 137-141.
  • 8Lee W, Xiang D. Information theoretic measures foranomaly detection [C] /// Proceedings of the IEEE Symposium on Security and Privacy, Washington, 2001:130-147.
  • 9Feinstein I., Sehnackenberg D, Balupari R, et al. Statistical approaches to DDoS attack detection and response[C]// Proceedings of the DARPA Informa- tion Survivability Conference and Exposition, Washington, 2003: 303-314.
  • 10Lall A, Sekar V, Xu J,et al. Data streaming algo rithms for estimating entropy of network traffic[J] ACM SIGMETRICS Performance Evaluation Re view, 2006, 34(1): 145-156.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部