期刊文献+

一种基于布尔矩阵的关联规则快速挖掘算法 被引量:2

A fast algorithm for mining fo association rules based on boolean matrix
下载PDF
导出
摘要 关联规则的发现是数据挖掘中的一个重要问题,其核心是频繁模式的挖掘,通常采用的Apriori算法要多次扫描数据库并产生大量的候选项集,开销很大。本文采用基于布尔矩阵关联挖掘的算法,只需扫描一次数据库而且不需要链接产生候选项集,从而提高算法的效率。并通过实例说明了它是一种有效的关联规则挖掘方法。 The discovery of association rules in data mining is an important issue, the core of which is the frequent pattern mining, Apriori algorithm is classical for the association rule mining, but it should repeatedly scan the database and can produce plenty of candidates. By exernples, it is proved that Boolean Matrix Association Rules algorithm can improve the algorithmic efficiency by reducing the times of accessing database and without producing candidates.
作者 裴古英
出处 《自动化与仪器仪表》 2009年第5期16-18,共3页 Automation & Instrumentation
关键词 数据挖掘 关联规则 布尔矩阵:频繁项集 Data mining Association rule Boolean matrix Frequent itemset
  • 相关文献

参考文献6

二级参考文献22

  • 1皮德常,秦小麟,王宁生.基于动态剪枝的关联规则挖掘算法[J].小型微型计算机系统,2004,25(10):1850-1852. 被引量:16
  • 2[1]M.Depenbrock.Direct torque-control(DTC) of in-verter fed induction machine.IEEE PESC.1987.16(6):223-227
  • 3[2]R Krishanan and F C Doran.Study of parameter sensitivity in high-performance inverter-fed induction motor drive systems[J].IEEE Transac-tions on Industry Applications,1987,23(4)
  • 4[3]S Suwankawin and S sangwongwanich.A speed sensorless IM drivewith decoupling control and stability analysis of speed estimation[J].IEEE Trans Ind Electron,2002,49(2):444-455
  • 5程善美,付中奇.基于自适应转速辨识的直接转矩控制系统研究[J].电力电子技术,2007,41(9):24-25. 被引量:6
  • 6AGRAWAL R,IMIELINSKI T,SWAMI A.Mining association rules between sets of items in large database[A].In Proc.of the ACM SIGMOD Intl Conf.on Management of Data[C].Washington,D.C.,1993.207 -216.
  • 7PARK JS,CHEN MS,YU PS.An effective hash based algorithm for mining association rules[A].ACM SIGMOD International Conference Management of Data[C].1995.175-186.
  • 8SAVASERE A,OMIECINSKI E,NAVATHE S.An efficient algorithm for mining association rules in large database[A].In:Proc.of 21th Intl Conf.on Very Large DataBase[C].Zurich,Swizerland,1995.432-443.
  • 9PASQUIER N,BASTIDE Y,TAOUIL R,et al.Discovering frequent closed item sets for association rules[A].ICDT'99,Israel[C].1999.398 -416.
  • 10HAN J,PEI J,YIN Y.Mining frequent patterns without candidate generation[A].In:Proceedings of the 2000 ACM SIGMOD Internal Conference on Management of Data[C].Dallas,Texas:ACM Press,2000.1-12.

共引文献85

同被引文献10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部