摘要
Flow separation occurs over the compression comers generated by deflected control surfaces on hypersonic re-entry vehicles and in the inlet of scram jet engines. Configurations like a double wedge and double cone model are useful for studying the separated flow features. Flow fields around concave comers are relatively complicated and produce several classical viscous flow features depending on the combination of the first and second wedge or cone half apex angles. Particularly characteristic phenomena are mainly shock/boundary layer, shock/shock interaction, unsteady shear layers and non-linear shock oscillations. Although most of these basic gas dynamics characteristics are well known, it is not clear what happens at high enthalpy conditions. This paper reports a result of flow fields over a double wedge at a stagnation enthalpy of 4.8 MJ/kg. The experiment was carried out in a free piston shock tunnel at a nominal Mach number of 6.99. Schlieren and double exposure holographic interferometry were applied to visualize the flow field over the double wedge.