期刊文献+

基于贝叶斯推理的像元内部端元选择模型 被引量:2

Selecting Per-Pixel Endmembers Set Based on Bayesian Inference
原文传递
导出
摘要 提出了利用贝叶斯推理选择混合像元内端元的模型。考虑到端元光谱的不确定性,基于贝叶斯推理和线性光谱混合模型得到了像元内端元集合的后验概率表达式。在获得端元共存的先验知识基础上,结合端元光谱的正态分布函数,通过最大后验概率得到最佳的端元集合。通过对包含147431个像元的ETM+影像试验表明,相对于IDRISI软件的MRES和PG算法,该算法可削减至少70%的冗余端元,使端元选择错误导致的分解误差降低至少28%。结果表明,由于充分考虑端元光谱的不确定性和端元的共存性,通过贝叶斯推理可以大幅度提高端元选择的正确率,从而改善混合像元的分解精度。 A Bayesian inference model was developed to select per-pixel endmembers set. Considering the uncertainty of endmembers' spectra, based on Bayesian inference and linear spectral mixture model, the posterior probability of per-pixel endmembers set was obtained. Using the prior knowledge of endmembers' coexistence, combined with the normal distribution function of endmembers' spectra, the optimal endmembers set was selected based on maximal liklihood. The experiment on an ETM+ image including 147431 pixel showed that, compared with the MRES and PG algorithms provided by IDRISI, the Bayesian approach reduced 70% redundant endmembers, and the unmixing error induced by inaccurate endmembers was reduced to 28 %. The result showed that, considering the uncertainty of endmemebers" spectra and the coexistence of endmembers, Bayesian inference can increase the accuracy rate of endmembers" selection, so the unmixing accuracy was improved significantly.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第9期2577-2583,共7页 Acta Optica Sinica
基金 国家自然科学基金(60875007) 全国百篇优秀博士论文奖项目(199936) 北京大学为新研究基金(W08SD04)资助课题
关键词 遥感 端元选择 贝叶斯推理 混合像元 端元集合 线性光谱混合模型 remote sensing endmember selection Bayesian inference mixed pixel endmembers set linear spectral mixture model
  • 相关文献

参考文献18

  • 1N.Keshava.A survey of spectral unmixing algorithms[J].Lincoln Laboratory J.,2003,14(1):55-78.
  • 2C.Huang,J.R.G.Townshend.A stepwise regression tree for nonlinear approximation:applications to estimating subpixel land cover[J,].International J.Remote Sensing,2003,24 (1):75-90.
  • 3J.J.Settle,N.A.Drake.Linear mixing and the estimation of ground cover proportions[J].International J.Remote Sensing,1993,14(6):1159-1177.
  • 4吴波,张良培,李平湘.基于支撑向量回归的高光谱混合像元非线性分解[J].遥感学报,2006,10(3):312-318. 被引量:29
  • 5X.W.Li,A.H.Strahler.Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy:effect of crown shape and mutual shadowing[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):276-292.
  • 6Y.E.Shimabukuro,J.A.Smith.The least-squares mixing models to generate fraction images derived from remote sensing multispectral data[J].IEEE Transactions on Geoscience and Remote Sensing,1991,29(1):16-20.
  • 7D.A.Roberts.Separating Spectral Mixtures of Vegetation and Soils[D].University of Washington,1991.
  • 8F.Maselli.Multielass spectral decomposition of remotely sensed scenes by selective pixel unmixing[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1809-1820.
  • 9丛浩,张良培,李平湘.一种端元可变的混合像元分解方法[J].中国图象图形学报,2006,11(8):1092-1096. 被引量:24
  • 10H.L.Zhu.Linear spectral unmixing assisted by probability guided and minimum residual exhaustive search for subpixel classification[J].International J.Remote Sensing,2005,26(24):5585-5601.

二级参考文献59

  • 1邵军明,路宏年,蔡慧.X射线成像的一种点扩展函数模型[J].光学学报,2005,25(8):1148-1152. 被引量:9
  • 2宗思光,王江安.多尺度形态算子融合图像滤波技术及滤波质量评价[J].光学学报,2005,25(9):1176-1180. 被引量:15
  • 3郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪[J].光电工程,2006,33(6):73-77. 被引量:30
  • 4胡小平,陈国良,毛征宇,余以道.离焦模糊图像的维纳滤波复原研究[J].仪器仪表学报,2007,28(3):479-482. 被引量:32
  • 5David L. Donoho. Denoising by soft-thresholding[J]. IEEE Trans. Information Theory, 1995, 41(3) : 613-627
  • 6Do M N, Vetterli M. Contourlets: Directional multiresolution image representation[C]. Proc. IEEE International Conference on Image Processing, Rochester, NY: 2002. 357-360
  • 7R. R. Coifman, D. L. Donoho. Translation-invariant de-noising [C]. Wavelets and Statistics, Springer Lecture Notes in Statistics 103, New York: Springer,Verlag, 1995. 125-150
  • 8Alyson K. Fletcher, Kannan Ramchandran, Vivek K. Goyal. Wavelet denoising by recursive cycle spinning[C]. Proc. IEEE International Conference Image Processing, Rochester, NY; 2002. 873-876
  • 9Alyson K. Fletcher, Kannan Ramchandran, Vievk K. Goyal. Iterative projective wavelet methods for denoising [C]. Proc. SPIE, 2003, 5207: 9-15
  • 10David L. Donoho, lain M. Johnstone. Threshold selection for wavelet shrinkage of noisy data [C]. Proceedings of the 16th Annual International Conference of IEEE, Engineering in Medicine and Biology Society, 1994, 1 : A24-A25

共引文献89

同被引文献28

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部