期刊文献+

水相合成CdX(X=Te,Te/CdS,Te/ZnS)红色量子点及毒性效应 被引量:4

Aqueous Phase Synthesis of Red CdX(X=Te,Te/CdS,Te/ZnS) Quantum Dots and Their Toxic Effects
原文传递
导出
摘要 分别以巯基乙酸(Mercaptoacetic Acid,MA)、还原型谷胱甘肽(Glutathione,GSH)为稳定剂在水相中直接合成了巯基乙酸CdTe(CdTe-MA)、红色巯基乙酸CdTe/CdS(CdTe/CdS-MA)、巯基乙酸CdTe/ZnS(CdTe/ZnS-MA)及谷胱甘肽CdTe(CdTe-GSH)量子点.其中,CdTe-GSH量子点的量子产率可达47.3%.体外溶血实验证实CdTe/ZnS-MA和CdTe-GSH量子点的溶血率较CdTe-MA和CdTe/CdS-MA低,浓度为0.05mmol/L的量子点溶血率<5%,达到了生物医用材料的要求.活体实验证实:通过尾静脉方式把量子点注入小鼠体内后,荧光显微镜观察发现高剂量的量子点(0.4mmol/10g)在体内主要在心、肝、脾、肾组织中分布较多,且引起不同程度的组织病变. Mercaptoacetic acid (MA) capped CdTe, CdTe/CdS, CdTe/ZnS quantum dots (QD) and glutathione (GSH)-capped CdTe QDs were directly synthesized in aqueous media. The fabricated CdTe-GSH QDs have an ultra small hydrodynamic diameter (3--4 nm) and possess high quantum yields (47.3%). In vitro hemolysis testing showed that the hemolysis rates (HR) of CdTe/ZnS-MA and CdTe-GSH were less than 5% (concentration being 0.05 mmol/L), which were lower than CdTe-MA and CdTe/CdS-MA QDs, meeting the requirements for biomedical materials. The toxicity of QD in vivo was tested by injected QD in mice through tail vein. Fluorescence microscopy showed that a high dosage (0.4 mmol/10 g) of CdTe-GSH and CdTe/ZnS-MA QD was distributed mainly in the heart, liver, spleen and kidney tissues and caused varying degrees of tissue lesions.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2009年第17期2025-2030,共6页 Acta Chimica Sinica
基金 四川农业大学引进人才基金(No.007202) 四川省教育厅自然科学科研重点(No.2005A033)资助项目
关键词 红色量子点 溶血 毒性 谷胱甘肽 red quantum dot hemolysis toxicity glutathione
  • 相关文献

参考文献20

  • 1Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
  • 2Chan, W. C. W.; Nie, S. M. Science 1998, 281, 2016.
  • 3Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763.
  • 4Zheng, Y. G.; Gao, S. J.; Ying, J. Y. Adv. Mater. 2007, 19, 376.
  • 5Kikkeri, R.; Lepenies, B.; Adibekian, A.; Laurino, P.; Seeberger, P. H. J. Am. Chem. Soc. 2009, 131, 2110.
  • 6Kuo, Y. C.; Wang, Q.; Ruengruglikit, C.; Yu, H.; Huang, Q. J. Phys. Chem. C 2008, 112, 4818.
  • 7Clarke, S. J.; Hollmann, C. A.; Zhang, Z.; Suffem, D.; Bradforth, S. E.; Dimitrijevic, N. M.; Minarik, W. G.; Nadeau, J. L. Nat. Mater. 2006, 5, 409.
  • 8Gu, Z. Y.; Zou, L.; Fang, Z.; Zhu, W. H.; Zhong, X. H. Nanotechnology 2008, 19, 135604.
  • 9Qin, Y. B.; Yang, X.; Yu, J. S. Chin. J. Inorg. Chem. 2006,22,851.
  • 10Qian, H. F.; Weng, J. F.; Ren, J. C. Small 2006, 2, 747.

二级参考文献61

  • 1Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005, 113(7): 823-839.
  • 2Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622-627.
  • 3Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004, 22(8): 969- 976.
  • 4Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol, 2004, 22(1): 47- 52.
  • 5Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709): 538- 544.
  • 6Howarth M, Takao K, Hayashi Y, Ting A Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci USA, 2005, 102(21): 7583-7588.
  • 7Dabbousi B O, RodriguezViejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B, 1997, 101(46): 9463-9475.
  • 8Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem, 1996, 100(2): 468-471.
  • 9Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281 (5385): 2013- 2016.
  • 10Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018.

共引文献23

同被引文献153

  • 1Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos A P. Science, 1998, 281:2013-2016.
  • 2Chan WC W, NieS. Science, 1998, 281(5385): 2016-2018.
  • 3Michalet X, Pinaud F F, Bentolila L A, et al. Science, 2005, 307 : 538-544.
  • 4Medintz I L, Uyeda H T, Goldman E R, et al. Nat. Mater. , 2005, 4:435-446.
  • 5Larson D R, Zipfel W R, Williams R M, et al. Science, 2003, 300(5624) : 1434-1436.
  • 6Tanke H J, Dirks R W, Raap T. Curr. Opin. Biotechnol. , 2005, 16 : 49-54.
  • 7Leatherdale C A, Woo W K, Mikulec F V, et al. J. Phys. Chem. B, 2002, 106:7619-7622.
  • 8Stuczynski S M, Brennan J G, Steigerwald M L. Inorg. Chem. , 1989, 28(25) : 4431-4432.
  • 9Bawendi M G, Steigerwald M L, Brus L E. Annu. Rev. Phys. Chem. , 1990, 41:477-496.
  • 10Yu WW, PengX G. Angew. Chem. Int. Ed. , 2002,41(13): 2368-2371.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部