期刊文献+

汉语句子相似度计算在FAQ中的应用 被引量:24

Application of Chinese Sentence Similarity Computation in FAQ
下载PDF
导出
摘要 通过对传统的汉语句子相似度模型进行改进,提出一种基于关键词加权的汉语句子相似度计算方法,在此基础上实现一个基于常问问题库的中文问答系统。该系统通过将用户输入的自然语言问句与常问问题库中的候选问题集进行相似度计算,自动返回最匹配的答案给用户,自动更新和维护常问问题库。实验结果表明该方法在问句匹配上比传统方法具有更高的准确率。 By improving the traditional Chinese sentence similarity model, this paper proposes a method based on key words weighted to compute sentence similarity, and a question answer system based on Frequently Asked Question(FAQ) is implemented. This system automatically computes sentence similarity between users' questions in natural language and questions in FAQ, and returns the answer to the user. It can also automatically update and maintain FAQ. Test result shows that compared with traditional sentence similarity model, this method has more precision in matching question.
作者 裴婧 包宏
出处 《计算机工程》 CAS CSCD 北大核心 2009年第17期46-48,共3页 Computer Engineering
基金 国家"973"计划基金资助项目(2007CB613507)
关键词 句子相似度 关键词 常问问题 sentence similarity key words Frequently Asked Question(FAQ)
  • 相关文献

参考文献4

  • 1郑实福,刘挺,秦兵,李生.自动问答综述[J].中文信息学报,2002,16(6):46-52. 被引量:165
  • 2王常亮,滕至阳.语句相似度计算在FAQ中的应用[J].计算机时代,2006(2):24-26. 被引量:10
  • 3赵妍妍,秦兵,刘挺,等.基于多特征融合的句子相似度计算[C]//全国第八届计算语言学联合学术会议论文集.北京:清华大学出版社,2005:168-174.
  • 4王洋,秦兵,郑实福.句子相似度计算在FAQ中的应用.第一届学生计算语言学研讨会论文集.北京:北京大学出版社,2002,175~181

二级参考文献16

  • 1王荣波,池哲儒.基于词类串的汉语句子结构相似度计算方法[J].中文信息学报,2005,19(1):21-29. 被引量:28
  • 2[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 3[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 4[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 5[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001
  • 6[1]Ittycheriah,M. Franz,W-J Zhu,A. Ratnaparkhi. IBM's Statistical Question Answering System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 7[2]D. Elworthy. Question Answering Using a Large NLP System. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 8[3]L. Wu,X-j Huang,Y. Guo,B. Liu,Y. Zhang. FDU at TREC-9:CLIR,Filtering and QA Tasks. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 9[4]R.J. Cooper, S. M. Rüger. A Simple Question Answering System. Proceedings of the night Text Retrieval Conference(TREC-9)
  • 10[5]C.L.A. Clarke, G. V. Cormack, D. I. E. Kisman, T. R. Lynam. Question Answering by Passage Selection. Proceedings of the night Text Retrieval Conference (TREC-9)

共引文献182

同被引文献197

引证文献24

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部