摘要
研究了由给定的断层图像轮廓重构三维表面的问题。通过考虑两相邻断层上轮廓线的相对位置(即对中性)作为几何约束,定义了对应系数,当两条轮廓的对应系数大于给定的阈值时,表明轮廓间具有对应关系;通过引入两条边,使同一层上的多条轮廓合并为一条轮廓来解决分支问题;并在Christiansen提出的最短对角线法基础上,提出了一种改进的最短对角线法进行三角面片的构造,将该方法应用于一组牙齿的CT图片,获得满意的三维重构图。
The problem of reconstruction to triangular surfaces from given contours is considered. The correspondence coefficient is proposed by considering the relative position between contours of adjacent slices as geometrical constraint. If the correspondence coefficient between contours is larger than a given threshold value, the correspondence relations are defined. We solve the branching structure problem by introducing two additional edges and extract a triangle closed mesh from the contours structure with an improved algorithm based on the shortest diagonal line. An experimental results show that the presented methods are content in reconstruction the surface from a group of dentary CT picture.
出处
《微计算机信息》
2009年第25期214-216,共3页
Control & Automation
基金
基金申请人:秦新强
项目名称:科学计算可视化在医学三维重建的理论与应用研究
基金颁发部门:陕西省教育厅(08JK399)
关键词
轮廓线
对应关系
分支问题
最短对角线
表面重建
contour
correspondence relation
branching problem
the shortest diagonal line
surface reconstruction