期刊文献+

用于色情网页过滤中的KNN算法改进 被引量:1

A Improved KNN Algorithm Applied to Pornographic Web Pages Filtering
下载PDF
导出
摘要 针对互联网日益泛滥的色情信息,分析了向量空间模型中KNN算法,并对它的缺陷进行了改进,将其运用于色情网页过滤中,提出了一种色情网页过滤解决方案。该方法首先对特征项的选取和权重计算的方法进行了优化,然后使用改进后KNN算法进行网页分类。实验表明,通过改进,有效地降低了向量空间的维数,提高了网页分类的精度和速度,能有效地识别并过滤色情网页。 Owing to pornographic information increasingly overruns on Internet,KNN algorithm used in vector space model is analyzed and improved.By applying it in pornographic web page filtering,a new model for page filtering is designed.The method improves feature vectors selection and weight computing,then classifies the web page using KNN algorithm,Experiments prove this method improves the classify speed and precision,narrow down vector space,and can realizes efficient pornographic web page filtering.
出处 《计算机安全》 2009年第9期17-19,22,共4页 Network & Computer Security
关键词 KNN算法 向量空间模型 特征选择 权重计算 色情网页过滤 KNN algorithm Vector space model Feature selection Weight algorithm Pornographic webpage filtering
  • 相关文献

参考文献5

二级参考文献27

  • 1王聃,贾云伟,林福严.人脸识别系统中的特征提取[J].微计算机信息,2005,21(07X):53-55. 被引量:18
  • 2Thorsten Joachims. Text categorization with support vector ma-chines: learning with many relevant features. Proceedings of ECML-98, lOth European Conference on Machine Learning.
  • 3Ziarko W.. A variable precision rough set model. Journal of Computer and System Sciences, 1993, 46: 39- 59.
  • 4Malcolm Beynon. Reducts within the variable precision rough sets model: A further investigation. European Journal of Operational Research,2001,134:592 - 605.
  • 5Jones, K.S.A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28 ( 1 ) :11 - 20.
  • 6Li-Ping Jing, Hou-Kuan Huang, Hong-Bo Shi. Improved feature selection approach TFIDF in text mining. Machine Learning and Cybernetics, 2002, (2) :944 - 946.
  • 7Y.Yang.A Comparative Study on Feature Selection in Text Categorization[C].In: Proceeding of the Fourteenth International Conference on Machine Learning (ICML'97),412-420,1997.
  • 8Mlademnic,D.,Grobelnik,M.Feature Selection for unbalanced class distribution and Naive Bayes[A].Proceedings of the Sixteenth International Conference on Machine Learning [C].Bled:Morgan Kaufmann, 1999:258-267.
  • 9Lewis DD. Feature selection and feature extraction for text categorization [A].Proc. of Speech and Natural Language Workshop,February 1992.212-217.
  • 10梁久祯,兰东俊.基于先验知识的网页特征压缩与线性分类器设计[C].第十二届全国神经计算学术大会讨论文集.北京:人民邮电出版社,2002:494-501.

共引文献165

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部