期刊文献+

Mn_(0.43)Ni_(0.9)CuFe_(0.67)O_4 NTC热敏材料的Pechini法制备及微波烧结特性研究 被引量:2

Preparation and Microwave Sinterability of Mn_(0.43)Ni_(0.9)CuFe_(0.67)O_4 NTC Thermistor Materials by Pechini Method
下载PDF
导出
摘要 为制备材料常数(B值)1900K左右宽温区NTC热敏电阻,将Pechini方法制备的Mn0.43Ni0.9CuFe0.67O4粉体置于2.45GHz多模腔微波炉中,经不同温度下微波煅烧压制成型后,于1000℃下微波烧结.采用红外(FT-IR),X射线衍射(XRD),扫描电镜(SEM),粒度分析分别对样品的晶体结构、相组成、形貌和粒度分布进行了表征.结果表明,不同煅烧和烧结工艺对元件的电学性能有很大的影响;微波最佳煅烧温度为650℃,比常规煅烧所需温度低;微波烧结能够获得微观结构均匀致密的陶瓷体;微波烧结制得元件的B值和电阻率均匀性较好,其B值平均值为1930K,偏差为0.31%,电阻率ρ的平均值为135Ω.cm,偏差为4.55%;而常规烧结制得元件的B值平均值为1720K,偏差为1.47%,电阻率ρ的平均值为78Ω.cm,偏差为25.34%.复阻抗分析表明,微波烧结后样品的晶粒电阻Rb和晶界电阻Rgb分别为255和305Ω,而常规烧结样品的晶粒和晶界电阻分别为200和230Ω. In order to obtain the NTC thermistors with small B constant (about 1900K), applied to wide temperature range, Mn0.43Ni0.9CuFe0.67O4 NTC thermistor materials prepared by Pechini method were microwave-calcined at different temperatures (650℃, 750℃ and 850℃). The calcined Mn0.43Ni0.9CuFe0.67O4 powders were pressed and then sintered at 1000℃ in a microwave furnace (multimode cavity, 2.45GHz).The crystal structure, phase compositions, morphology and particle size distribution of the samples were analyzed by FT-IR, X-ray diffraction (XRD), scanning electron microscope (SEM) and a laser particle size analyzer. The experimental results show that the electrical properties of the ceramics are strongly dependent on the calcination and sintering process. The application of microwave leads to a lower calcination temperature (650℃) and densified uniform microstructures. Microwave sintering can obtain the components with well uniformity of B constant and resistivity, of which the Bavg. is 1930K (deviation of 0.31%) and resistivity ρavg. is 135Ω·cm (deviation of 4.55%). However, the Bavg. is 1720K (deviation of 1.47%) and resistivity ρavg. is 78Ω·cm (deviation of 25.34%) for the conventionally sintered components. From complex impedance analysis, the grain resistance (Rb) and grain boundary resistance (Rgb) are respectively 255Ω and 305Ω for the microwavesintered samples. The Rb and Rgb are respectively 200Ω and 230Ω for conventionally sintered samples.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第5期1013-1018,共6页 Journal of Inorganic Materials
基金 乌鲁木齐市科技攻关项目(G06211002) 乌鲁木齐市种子基金(K08141001)
关键词 微波烧结 微波煅烧 NTC Pechini法 microwave sintering microwave calcining NTC pechini method
  • 相关文献

参考文献19

  • 1Wang Shao-Gang,Chang Ai-Min,Zhang Hui-Min,et al.Materials Chemistry and Physics,2008,110(1):83-88.
  • 2Menezes R R,Kiminami R H G A.J.Mater.Process.Tech.,2008,203(3):513-517.
  • 3孟庆新,梁宝岩,李海云,金松哲,苏春晖.机械合金化和放电等离子烧结制备Y_3Al_5O_(12)陶瓷[J].功能材料与器件学报,2008,14(3):591-596. 被引量:1
  • 4Mohamed Aliouat,Louis Mazo,Gilbert Desgardin,et al.J.Am.Ceram.Soc.,1990,73(8):2515-2518.
  • 5Selmi F,GuerinF,Yu X D,et al.Materials Letters,1992,12(6):424-428.
  • 6Mark I Jones,Maria-Cecilia Valecillos,Kiyoshi Hirao.J.Am.Ceram.Soc.,2001,84(10):2424-2426.
  • 7Huang Z J,Masahide Gotoh,Yukio Hirose.J.Mater.Process.Tech.,2009,209(5):2446-2452.
  • 8Kristen H Brosnan,Gary L Messing,Dinesh K Agrawal.J.Am.Ceram.Soc.,2003,86(8):1307-1312.
  • 9Ebadzadeh T,Valefi M.Journal of Alloys and Compounds,2008,448(2):246-249.
  • 10常爱民,杨文,简家文,李言荣.氧化物电子陶瓷微波烧结用保温材料MgAl_2O_4-LaCrO_3的研究[J].无机材料学报,2002,17(4):713-718. 被引量:5

二级参考文献40

  • 1李江,邱发贵,孙兴伟,潘裕柏,郭景坤.真空烧结Nd:YAG透明陶瓷的研究[J].功能材料,2004,35(z1):367-370. 被引量:9
  • 2李莉,童茂松,翁爱华.V_2O_5薄膜在传感器上的研究进展[J].功能材料,2005,36(10):1482-1484. 被引量:13
  • 3栾奇,钟涛兴,王澈,王素云.放电等离子烧结(SPS)YAG陶瓷的初步研究[J].功能材料与器件学报,2006,12(2):113-116. 被引量:5
  • 4田敬民.SnO_2气体传感器的复阻抗谱研究[J].无机材料学报,1996,11(1):113-118. 被引量:3
  • 5刘树英.华中理工大学博士论文[M].,1998..
  • 6OLHOEFT G R. Low frequency electrical properties [J]. Geophysics, 1985, 50: 2492-2503.
  • 7KNIGHT R J, NUR A. The dielectric constant of sandstones, 60kHz to 4MHz[J]. Geophysics, 1987, 52: 644-654.
  • 8ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of polycrystalline olivine compacts[J]. J Geophys Res, 1991, 96:16205-16222.
  • 9ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of dunite as functions of temperature and oxygen fugacity[J]. Phys Chem Minerals, 1993,19: 545-561.
  • 10ROBERTS J J, TYBURCZY J A. Impedance spectroscopy of single and polycrystalline olivine: Evidence for grain boundary transport [J]. Phys Chem Minerals, 1993, 20:19-26.

共引文献39

同被引文献26

  • 1吴雄.NTC热敏电阻应用动态[J].电子与自动化,1993,22(1):6-11. 被引量:2
  • 2王卫民,赵鸣,张慧君,高峰,田长生.NTC热敏电阻材料组成及制备工艺研究进展[J].材料科学与工程学报,2005,23(2):286-289. 被引量:26
  • 3翟继卫,杨文,沈波,康健.抑制浪涌电流用NTC热敏电阻器[J].电子元件与材料,1996,15(2):33-35. 被引量:18
  • 4孙生才,薛垂荫,徐民宗,徐哲尧.NTC微珠状热敏电阻的各种应用[J].传感器技术,1990(6):44-49. 被引量:2
  • 5王卫民.Mn-Co-Ni-O基NTC热敏半导体陶瓷的低温烧结与电性能研究.西安:西北工业大学博士论文,2007.
  • 6Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industria perspective. J. Am. Ceram. Soc., 2009, 92(5): 967-983.
  • 7Fritsch S, Sarrias J, Briee M, et al. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient(NTC) thermistors. Solid State Ionics.1998, 109(3/4): 229-237.
  • 8Park K. Microstructure and electrical properties of Ni1.0Mn2-xZrxO4 (0≤x≤1.0) negative temperature coefficient thermistors. Materials Science and Engineering B, 2003, 104 (1/2): 9-14.
  • 9Fang D L, Wang Z B, Yang P H, et al. Preparation of ultra-fine nickel manganite powders and ceramics by a solid state coordination reaction. J. Am. Ceram. Soc., 2006, 89(1): 230-235.
  • 10Kanade S A, Vijaya P. Electrical properties of thick-film NTC thermistor composed of Ni0.8Co0.2Mn2O4 ceramic: effect of inorganic oxide binder. Mater. Res. Bull., 2008, 43(4): 819-824.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部