期刊文献+

区间参数结构的一种分析方法 被引量:1

NEW ANALYSIS METHOD FOR STRUCTURE WITH INTERVAL PARAMETER
下载PDF
导出
摘要 对结构不确定问题的区间有限元分析提出一种求解方法,将给定的区间映射到一个小的参数区间中,并对参数区间进行加法分解。对结构区间有限元方程中刚度矩阵的多变量区间非线性表达式利用泰勒公式线性化,将区间非线性运算转化成为区间参数的线性运算,在一定程度上减小了区间运算中的扩张问题,再利用区间参数摄动方法或区间的直接优化方法获得问题的解答。文中通过两个算例,给出该方法与未经线性化的区间数学算法结果的比较。 A new interval finite element analysis method is presented for uncertain structural problems. Each interval is mapped to a small parameter one, to which the additive decomposition is operated. By linearizing the multivariate nonlinear expressions of interval structural stiffness matrix using the Taylor formula, the nonlinear interval problem is transformed to linear computation of interval parameters, which can decrease the excessive width of interval operations to a certain extent. Then the results are obtained by interval parameter perturbation method or direct optimization method. An example is presented to illustrate the computational aspects of the proposed method and ordinary interval arithmetic.
出处 《机械强度》 CAS CSCD 北大核心 2009年第5期776-780,共5页 Journal of Mechanical Strength
基金 国家863项目(2006AA04Z402) 陕西省自然科学基金项目(2005A009)资助~~
关键词 区间有限元 区间参数 线性化 参数摄动法 直接优化法 Interval finite element Interval parameters Linearization Parameter perturbation method Direct optimization method
  • 相关文献

参考文献13

  • 1Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells[J]. Journal of Applied Mechanics, 1993, 60(3) : 683-688.
  • 2Elishakoff I, Elisseeff P, Glegg S A L. Non-probabilistie, convex-theoretic modeling of scatter in material properties[ J]. American Institute of Aeronautics and Astronautics Journal ( AIAA Joumal ), 1994, 32 (4) : 843-849.
  • 3Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis[J]. American Institute of Aeronautics and Astronautics Journal (AIAA Journal), 1997, 35(4) : 725-735.
  • 4郭书祥,吕震宙.线性区间有限元静力控制方程的组合解法[J].计算力学学报,2003,20(1):34-38. 被引量:21
  • 5Mcwilliam S. Anti-optimization of uncertain structures using interval analysis[J]. Computers and Structures, 2001, 79(4): 421-430.
  • 6吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间分析的非概率可靠性分析方法[J].计算力学学报,2002,19(3):260-264. 被引量:49
  • 7吴晓,罗佑新,文会军,李敏.非确定结构系统区间分析的泛灰求解方法[J].计算力学学报,2003,20(3):329-334. 被引量:12
  • 8Markov S. Iterative method for algebric solution to interval equations[J]. Applied Numerical Mathematics, 1999, 30(2/3): 225-239.
  • 9Dessombz O, Thouverez F, Laine J P, Jezequel L. Analysis of mechanical systems using interval computations applied to finite element methods [J]. Joumal of Sound and Vibration, 2001, 239(5) : 949-968.
  • 10陈怀海.非确定结构系统区间分析的直接优化法[J].南京航空航天大学学报,1999,31(2):146-150. 被引量:17

二级参考文献19

  • 1田玮,凌燮亭.基于区间线性方程组解的电路容差分析[J].电子学报,1995,23(9):56-60. 被引量:5
  • 2[1]Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis[J]. AIAA J. ,1997,35(4): 727-735.
  • 3[2]Moore R E. Interval Analysis[M]. Prentice-Hall,Englewood Cliffs, NJ, 1966. 25-39.
  • 4[3]Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety. 1994, 14: 227-245.
  • 5Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis[J]. AIAA Journal,1997,35(4) : 727-735.
  • 6Elishakoff I. Three versions of the finite element method based on concepts of eitherstochasticity,fuzziness or anti-optimization[J]. Applied Mechanics Review, 1998,51 (3) : 209-218.
  • 7祁力群.区间分析[J].运筹学杂志,1982,(1):151-156.
  • 8Rao S S,AIAA J,1997年,35卷,4期,727页
  • 9王德人,非线性方程的区间算法,1987年,1页
  • 10Elishakoff I. Three versions of the finite element method based on concepts of either stochasticity, fuzziness or anti-optimization [J]. Applied Mechanics Review, 1998,51(3) :209 ~218.

共引文献84

同被引文献13

  • 1Moens D,Vandepitte D.A survey of non-probabilistic uncertainty treatment in finite element analysis [J].Computer Methods in Applied Mechanics and Engineering,2005,194(12/13/14/15/16): 1527-1555.
  • 2Moens D,Hanss M.Non-probabilistic finite element analysis for parametric uncertainty treatment in applied mechanics: Recent advances [J].Finite Elements in Analysis and Design,2011,47(1): 4-16.
  • 3Chen S H,Lian H,Yang X.Interval static displacement analysis for structures with interval parameters[J].International Journal for Numerical Methods in Engineering,2002,53(2):393-407.
  • 4Chen S H,Wu J.Interval optimization of dynamic response for structures with interval parameters [J].Computers and Structures,2004,82: 1-11.
  • 5Qiu Z P,Elishakoff I.Antioptimization of structures with large uncertain but non-random parameters via interval ananlysis [J].Computer Methods in Applied Mechanics and Engineering,1998,152(3/4): 361-372.
  • 6Bhattacharyya B,Chakraborty S.NE-MCS technique for stochastic structural response sensitivity [J].Computer Methods in Applied Mechanics and Engineering,2002,191: 5631-5645.
  • 7祁武超.飞行器结构不确定性传播分析及设计优化[D].北京: 北京航空航天大学,2012.
  • 8Chen S H,Ma L,Meng G W,Guo R.An efficient method for evaluating the natural frequency of structures with uncertain-but-bounded parameters [J].Computers and Structure,2009,87: 582-590.
  • 9Fujita K,Takewaki I.An efficient methodology for robustness evaluation by advanced interval analysis using updated second- order Taylor series expansion [J].Engineering Structures,2011,33: 3299-3310.
  • 10苑凯华,邱志平.阵风响应问题的区间分析方法[J].工程力学,2009,26(1):7-12. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部