期刊文献+

本原σ-LFSR的计数研究

Research on Counting of Primitive σ-LFSR
下载PDF
导出
摘要 针对σ-LFSR能够充分利用现代通用CPU且具有结构简单、适合软件快速实现的特点,利用本原σ-LFSR的距离向量和基判别定理,将本原σ-LFSR的计数问题转化为线性空间上基的问题,以此为基础,利用F2上次数小于n的互素多项式的对数解决F4上本原σ-LFSR的计数问题。 σ-LFSR is a kind of word-oriented Linear Feedback Shift Register(LFSR) with high efficiency and good cryptographic properties, especially its software implementation is efficient for modern processors. Through the coordinate sequences and base discriminance of primitive σ-LFSR, this paper converts the study of counting to the basis of liner space, and through the pairs of relatively prime polynomials on F2 with degree smaller than n, the counting formula of primitive σ-LFSR on F4 is obtained.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第18期154-155,158,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2006AA01Z425) 国家自然科学基金资助项目(90704003)
关键词 序列密码 本原σ-LFSR 基判别定理 计数 stream cipher primitive σ-LFSR base discriminance counting
  • 相关文献

参考文献5

  • 1Tsaban B, Vishne U. Efficient Linear Feedback Shift Registers with Maximal Period[J]. Finite Fields Application, 2002, 8(2): 256-267.
  • 2Zeng Guang, Han Wenbao, He Kaicheng. High Efficiency Feedback Shift Register: σ-LFSR[Z]. [2008-11-10]. http://eprint.iacr. org/.
  • 3张猛,曾光,韩文报,何开成.本原σ-LFSR序列的迹表示及其应用[J].电子与信息学报,2009,31(4):942-945. 被引量:7
  • 4张猛,韩文报.σ-LFSR的分类研究[C]//中国密码学分.密码学进展-CHINACRYPT’2007,中国密码学会2007年会论文集[C].成都:西南交通大学出版社,2007:27-34.
  • 5Benjamin A T, Bennett C D. The Probability of Relatively Prime Polynomials[J]. Mathematics Magazine, 2007, 80(3): 309-310.

二级参考文献15

  • 1曾光,何开成,韩文报.一类三项式形式适合软件实现的σ-LFSR[J].中国科学(E辑),2007,37(2):209-222. 被引量:11
  • 2Preneel B. Introduction to the proceedings of the fast software encryption 1994 workshop[C]. Lecture Notes in Computer Science, Leuven Belgium, 1995, 1008: 1-5.
  • 3Tsaban B and Vishne U. Efficient linear feedback shift registers with maximal period[J]. Finite Fields and Their Applications, 2002, 8(2): 256-267.
  • 4Dewar M and Panario D. Linear Transformation Shift Registers[J]. IEEE Trans. on Inform. Theory, 2003, 49(8): 2047-2052.
  • 5ECRYPT, eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932, Available at http://www.ecrypt.eu.org /stream/.
  • 6Watanabe P, Furuya S and Yoshida H, et al.. A new keystream generator MUGI[C]. Fast Software Encryption 2002 workshop, Lecture Notes in Computer Science, Leuven Belgium, 2003, 2365: 179-194.
  • 7Rogaway P and Coppersmith D. A software-optimized encryption algorithm[C]. Fast Software Encryption 1993 Workshop, Lecture Notes in Computer Science, Cambridge UK, 1994, 809: 53-63.
  • 8Coppersmith D, Halevi S, and Jutla C. Scream: A Software-Efficient Stream Cipher[C]. Fast Software Encryption 2002 Wokshop, Lecture Notes in Computer Science, Leuven Belgium, 2003, 2365: 195-209.
  • 9Boesgaard M, Vesterager M, and Pedersen T, et al.. Rabbit: A new high-performance stream cipher[C]. Fast Software Encryption 2003 Wokshop, Lecture Notes in Computer Science, Lurid Sweden, 2004, 2887: 307-329.
  • 10Ferguson N, Whiting D, and Schneier B, et al.. Helix: Fast encryption and authentication in a single cryptographic primitive[C]. Fast Software Encryption 2003 Wokshop, Lecture Notes in Computer Science, Lund Sweden, 2004, 2887: 330-346.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部