期刊文献+

基于KPCA-HSMM设备退化状态识别方法的研究 被引量:5

The Study of Equipment Degradation State Recognition Method Based on KPCA-HSMM
下载PDF
导出
摘要 为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量;然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量;并以此融合特征向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器,从而实现设备退化状态的识别。实验结果表明,该方法能有效的识别设备的退化状态,从而为多通道特征信息融合设备退化状态识别开辟新的途径。 In order to reduce redundancy among Multi-channel observations by sensors and compress high dimensional fault features, a new equipment degradation state recognition method based on kernel principal component analysis-hidden semi-Markov model (KPCA-HSMM) was proposed. The single channel vibration signal was processed by the way of wavelet transform correlation filter and wavelet correlation feature scale entropy vector of single channel vibration signal was constructed; the wavelet correlation feature scale entropy vectors of multi-channel were fused by KPCA to obtain the fused eigenvector and eliminate redundancy; the fused eigenvector of multi-channel was inputted to the HSMM for training, and running states classification model of equipment based on HSMM was con- structed to recognize the equipment degradation states. The experimental results show that the pro- posed method is very effective for equipment degradation state recognition and opens up a new way for recognizing equipment degradation state by multi-channel feature information fusion.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第6期740-745,共6页 Acta Armamentarii
关键词 信息处理技术 信息融合 核主元分析 小波相关特征尺度熵 隐半马尔可夫模型 状态识别 退化状态 information processing information fusion kernel principal component analysis waveletcorrelation feature scale entropy hidden semi-markov models state recognition degradation state
  • 相关文献

参考文献14

二级参考文献68

共引文献106

同被引文献47

  • 1司书宾,孙树栋,韩光臣,王军强.基于三角模糊数的综合保障评价指标权重分析[J].西北工业大学学报,2004,22(6):689-694. 被引量:44
  • 2宋雪萍,马辉,毛国豪,闻邦椿.基于CHMM的旋转机械故障诊断技术[J].机械工程学报,2006,42(5):126-130. 被引量:12
  • 3孙博,康锐,谢劲松.故障预测与健康管理系统研究和应用现状综述[J].系统工程与电子技术,2007,29(10):1762-1767. 被引量:168
  • 4VENKATASUBRAMANIAN V. Prognostic and diagnostic monitoring of complex systems for product lifecycle man- agement : challenges and opportunities [ J ]. Computers & Chemical Engineering, 2005,29(6) :1253-1263.
  • 5VENKATASUBRAMANIAN V. Systemic failures: chal- lenges and opportunities in risk management in complex systems[J]. AIChE Journal, 2011,57( 1 ) :2-9.
  • 6LEE J, NI J, DJURDJANOVIC D, et al. Intelligent prognostics tools and e-maintenance [ J]. Computers in Industry, 2006,57 (6) :476-489.
  • 7DJURDJANOVIC D, LEE J, NI J. Watchdog agent--an infotronics based prognostics approach for product performance degradation assessment and prediction [ J ]. Advanced Engineering Informatics, 2003,17 ( 3 ) : 109- 125.
  • 8KAZUHIKO S, YOSHIOMI M. How to prevent accidents in process industries? recent accidents and safety activi- ties in Japan: the 4th World Conference of Safety of Oil and Gas Industry, June 27-30,2012[ C]. Seoul: Korea, c2012.
  • 9MULLER J, LEMKE F. Self-organizing data mining [ M]. Berlin, Hamburg: Libri Books, 2000.
  • 10杨军,赵宇,李学京,于丹.复杂系统平均剩余寿命综合评估方法[J].航空学报,2007,28(6):1351-1354. 被引量:14

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部