摘要
运用有限元方法和Lagrange方程,建立列车—轨道—路基耦合系统动力分析模型,提出车辆单元和轨道单元,推导2种单元的刚度矩阵、质量矩阵和阻尼矩阵,并用Matlab编制了计算程序。利用文中提出的车辆单元和轨道单元,考虑列车速度、路基刚度以及过渡段轨道不平顺和路基刚度综合影响因素对轨道过渡段动力特性进行分析。分析表明:过渡段路基刚度突变对钢轨垂向加速度和轮轨作用力均有影响,其影响随着列车速度的提高而增大;过渡段轨道不平顺和路基刚度变化2种因素同时存在对钢轨垂向加速度和轮轨作用力的影响非常明显,其峰值远大于1种影响因素引起的动力响应;列车速度、路基刚度以及过渡段轨道不平顺和路基刚度综合影响因素对车体垂向加速度的影响甚微,其原因是车体附有的一、二系弹簧阻尼系统起到了很好的减振作用。
By means of finite element method and Lagrange equation,a dynamic analysis model for vehicle-track-subgrade coupling system is developed.Based on the model,new types of vehicle element and track element are presented and the associated stiffness matrix,mass matrix and damping matrix for these two kinds of the element are deduced.Then the computational software is coded with Matlab.As an application example,the dynamic characteristics for track transition are investigated by the vehicle and track elements,in which the influencing factors such as train speed, subgrade stiffness, and the combined irregularity of the track transition and subgrade stiffness are considered. The computational results show that the abrupt change of the subgrade stiffness has influence on the vertical rail acceleration and the wheel/rail contact force and this influence increases with the increase of the train speed. Both of the irregularity of the track transition and the subgrade stiffness have significant influence on the vertical rail acceleration and the wheel/rail contact force, and the peak value is far greater than the dynamic response caused by any single influencing factor. The train speed, the subgrade stiffness, and the combined irregularity of the track transition and the subgrade stiffness have little influence on the vertical vehicle acceleration as the primary and the secondary spring and damping system has excellent effect in reducing vibration.
出处
《中国铁道科学》
EI
CAS
CSCD
北大核心
2009年第5期15-21,共7页
China Railway Science
基金
国家自然科学基金资助项目(50568002)
国家重点基金研究发展计划资助项目(2007CB416607)
关键词
车辆单元
轨道单元
轨道过渡段
轮轨作用力
车辆—轨道相互作用
Vehicle element
Track element
Track transition
Vertical wheel/rail contact force
Vehicle-track interaction