期刊文献+

用U形切槽梁同时测定准脆性材料的拉伸强度和断裂韧度:理论分析 被引量:12

CONCURRENT MEASUREMENT OF TENSILE STRENGTH AND FRACTURE TOUGHNESS OF QUASI-BRITTLE MATERIALS USING U-NOTCHED BEAMS: THEORETICAL ANALYSIS
原文传递
导出
摘要 对于三点弯曲U形切槽梁二等分线上的张开应力,如果用Creager和Paris的经典近似公式计算,则其适用范围很小;而用我们修正的公式计算,其适用范围几乎函盖U形切槽二等分线上整个拉伸区。由张开应力在U形切槽二等分线断裂过程区长度上积分,然后除以该长度得到平均张开应力;当其达到临界值时就得到包含拉伸强度和断裂韧度两个材料参数的平均应力破坏准则;利用这一准则提出用三点弯曲U形切槽梁同时测定这两个材料参数的新方法。因此,只要在实验时,制作一系列切槽深度相等而根部曲率半径不同的待测准脆性材料的U形切槽梁,用三点弯曲加载并分别测得其临界荷载,在已知应力集中系数的情况下,应用平均应力破坏准则就得到一超定方程组,再用恰当的数值方法便可解出拉伸强度和断裂韧度两个未知数。 The classic approximate formula proposed by Creager and Paris is generally used to calculate the opening stress of three-point bending U-notched beams along the bisector, but the scope of application is very limited. The modified formula proposed in this paper widens its application scope and can be applied to almost the whole tensile region of the ligament along the U-notch bisector. Integrating the opening stress along the U-notch bisector over the fracture process zone length and dividing the integral by the length, the average opening stress is obtained. Once it reaches the critical value, the average stress failure criterion with two material parameters, namely tensile strength and fracture toughness, is derived. Based on this criterion, a new method of concurrently measuring the two material parameters of quasi-brittle materials using three-point bending U-notched beams is proposed. A series of experiments are carried out for U-notched beams with same notch depth but different root radii, and critical loads in three-point bending are obtained. With the derived stress concentration factors, the average stress failure criterion is used to generate a series of over-determined equations, where the tensile strength and fracture toughness as two unknowns can be solved readily with a proper numerical method.
作者 罗林 王启智
出处 《工程力学》 EI CSCD 北大核心 2009年第9期244-250,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10472075) 高校博士学科点专项基金项目(200806100042)
关键词 准脆性材料 拉伸强度 断裂韧度 三点弯曲U形切槽梁 近似应力公式 平均应力破坏准则 quasi-brittle materials tensile strength fracture toughness three-point bending U-notched beam approximate stress formula average stress failure criterion
  • 相关文献

参考文献17

  • 1Kolosov V. On the application of complex function theory to plane problem of the mathematical theory of elasticity [D]. Doctoral Dissertation, Dorpat University, Tactu, 1909. (in Russian).
  • 2Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity [M]. Holland: Noordhoof Leyden, 1953.
  • 3Neuber H. Theory of notch stresses [M]. Berlin: Springer-Verlag, 1958.
  • 4Westergaard H M. Bearing pressures and cracks [J]. Journal of Applied Mechanics, 1939, 6: A49-A53.
  • 5Irwin G R. Analysis of stresses and strain near the end of a crack transversing a plate [J]. Journal of Applied Mechanics, 1957, 24:361-364.
  • 6Williams M L. Stress singularities resulting from various boundary conditions in angular comers of plates in tension [J]. Journal of Applied Mechanics, 1952, 19: 526-528.
  • 7Creager M, Paris P C. Elastic field equations for blunt cracks with reference to stress corrosion cracking [J]. International Journal of Fracture Mechanics, 1967, 3: 247 -252.
  • 8Glinka G. Calculation of inelastic notch-tip strain-stress histories under cyclic loading [J]. Engineering Fracture Mechanics, 1985, 22: 839-854.
  • 9Lazzarin P, Tovo R. A unified approach to the evaluation of linear elastic fields in the neighborhood of cracks and notches [J]. International Journal of Fracture, 1996, 78: 3-19.
  • 10Filippi S, Lazzarin P, Tovo R. Developments of some explicit formulas useful to describe elastic stress field ahead of the notches [J]. International Journal of Solids and Structures, 2002, 39:4543-4565.

二级参考文献24

  • 1朱万成,冯丹,周锦添,唐春安.圆环试样用于岩石间接拉伸强度测试的数值试验[J].东北大学学报(自然科学版),2004,25(9):899-902. 被引量:12
  • 2王启智,汪坤.脆性材料三点弯曲试样的最大荷载及其挠度和刚度[J].四川大学学报(工程科学版),2005,37(6):1-5. 被引量:11
  • 3邱峰,丁桦.具有单元分裂功能的间断有限元方法[J].力学与实践,2006,28(4):54-59. 被引量:4
  • 4中华人民共和国建设部.工程岩体试验方法标准[S].北京:中国计划出版社,1999.20-20.
  • 5西田正孝.应力集中[M].北京:机械工业出版社,1986.416.
  • 6Gomes C J,Troyani N,Morillo C,et al.Theoretical stress concentration factors for short flat tension bars with opposite U-shaped notches[J].Journal of Strain Analysis,2005,40 (4):345-355.
  • 7彼得森 R E.应力集中系数[M].杨乐民,等译.北京:国防工业出版社,1988.
  • 8ISRM. Suggested methods for determining tensile strength of rock materials[J]. Int J Rock Mech Min Sci & Geomeeh Abstr, 1978,15:99-103.
  • 9Hondros G. The evaluation of Poisson's ratio and modulus of materials of a low tensile resistanee by the Brazilian (indirect tensile) test with particular reference to concrete[J]. Australian J Appl Sci, 1959, 10: 243-268.
  • 10Hobbs D W. The tensile strength of rocks[J]. Int J Rock Mech Min Sei Geomeeh Abstr, 1964, 1: 385-396.

共引文献34

同被引文献97

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部