期刊文献+

一种SVDD增量学习算法及应用

AN INCREMENTAL LEARNING ALGORITHM FOR SUPPORT VECTOR DATA DESCRIPTION AND ITS APPLICATION
下载PDF
导出
摘要 通过对支持向量数据描述SVDD(Support Vector Data Description)算法的阐述和SVDD算法在增量学习过程中支持向量集变化特性的分析,提出一种新的SVDD增量学习算法。以Spambase邮件语料库作为实验数据源,将其与非增量学习算法以及一般传统增量学习算法进行比较,结果证明,该算法在保证垃圾邮件识别精度的同时又大大缩短了训练时间。 This paper presents a novel approach for Support Vector Data Description (SVDD) incremental learning algorithm through the elaboration of SVDD and the analysis of support vector set' s change rule in incremental learning process. With the aid of spambase email cor- pus as the experimental data source, the comparison was carried on with non-incremental learning algorithm as well as general traditional learn- ing algorithm. The experimental result indicates that this approach guarantees the spam recognition precision and reduces the training time greatly as well.
出处 《计算机应用与软件》 CSCD 2009年第9期237-239,共3页 Computer Applications and Software
关键词 SVDD 增量学习 垃圾邮件 SVDD Incremental learning Spam email
  • 相关文献

参考文献12

  • 1David M J Tax, Robert P W Duin. Support Vector Data Description [ J]. Pattern Recognition Letters, 1999,20( 11 - 13 ) : 1191 - 1199.
  • 2David M J Tax, Robert P W Duin. Support Vector Data Description [ J ]. Machine Learning,2004,54:45 - 66.
  • 3Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York: Springer Verlag, 1999.
  • 4Xin Dong, Wu Zhaohui, Zhang Wanfeng. Support vector domain description for speaker recognition. 2001 IEEE Signal Proocessing Society Workshop. Falmouth ,2001.
  • 5杨敏,张焕国,傅建明,罗敏.基于支持向量数据描述的异常检测方法[J].计算机工程,2005,31(3):39-42. 被引量:17
  • 6李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913. 被引量:55
  • 7燕东渭,孙田文,杨艳,方建刚,刘志镜.支持向量数据描述在西北暴雨预报中的应用试验[J].应用气象学报,2007,18(5):676-681. 被引量:18
  • 8Syed N, Liu H, Sung K. Incremental learning with support vector machines[ C]//Proceedings of Workshop on Suppor Vector Machines at the International Joint Conference on Artificial Intelligence. 1999:876 - 892.
  • 9Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning[ C]//Advances in Neural In-formation Proceeding Systems. Cambridge, MA : MIT Press, 2000 ( 13 ) :409 - 415.
  • 10Domeniconi C, Gunopulos D. Incremental support vector machine construetion[ C ]//Proceeding of first IEEE International Conference on Data Mining. 2001:589 - 592.

二级参考文献40

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部