期刊文献+

不同射频输入功率下制备的氟化类金刚石碳膜疏水性研究 被引量:7

Hydrophobic nature of fluorinated diamond-like carbon films prepared under different radio-frequency power
原文传递
导出
摘要 以高纯石墨作靶、氩气(Ar)和三氟甲烷(CHF3)为源气体,用反应磁控溅射法在不同射频功率下制备了氟化类金刚石碳(F-DLC)膜,并对其疏水性进行研究.双蒸水液滴与膜表面接触角的测试结果表明,所制备薄膜表面的最大水接触角可达115°左右.通过原子力显微镜获得的薄膜表面AFM图谱、拉曼光谱以及傅里叶变换红外光谱探讨了影响薄膜的疏水性的因素.结果表明,薄膜的疏水性与薄膜的表面粗糙度和表面键结构直接相关,表面粗糙度越大,疏水性越好,但与薄膜中的F含量和sp3/sp2的比值并未呈单调增加或减小的对应关系.射频输入功率影响着薄膜的沉积速率,与薄膜表面粗糙度、薄膜中芳香环单核的比例以及薄膜表面的键结构(F的接入方式)直接相关. The fluorinated diamond-like carbon (F-DLC) films were prepared by reactive magnetron sputtering under different radiofrequency power with trifluoromethane ( CHF3 ) and argon (Ar) as source gases and pure graphite as a target. The hydrophobic nature of F-DLC films was studied. The result of measuring contact angle between double-stilled water and film surface shows that the maximal contact angle of film surface is approximately 115°. Factors influencing the hydrophobic nature of films were discussed by film surface morphology measured by atomic force microscopy (AFM), Raman spectra as well as FTIR spectra. The result demonstrates that the hydrophobic nature of films lies on roughness and bonding configuration of film surfaces. The more the roughness, the stroncer the bydrophobic nature is, but it doesn't show a simple decrease or increase with the content of F in films and the ratio of sp^3/sp^2 . Radio-frequency power influences the deposition rate, which correlates with the roughness of the film, proportion of mononuclear aromatics and bonding configuration of films surface (ways of F combination).
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2009年第9期6430-6435,共6页 Acta Physica Sinica
关键词 疏水性 反应磁控溅射 氟化类金刚石膜 射频功率 hydrophobic nature reactive magnetron sputtering F-DLC films radio-frequency power
  • 相关文献

参考文献26

  • 1Endo K,Tatsumi T 1995 J. Appl. Phys. 78 1370.
  • 2Jeong W Y, Lee Y H, Bakhtier F 2003 Thin Solid Films 423 97.
  • 3Teresa O,Chi K C,Kwang M L 2005 Thin Solid Films 475 109.
  • 4Durrant S F,Sandra G C C,Bolivar-M L U 1997 Thin Solid Films 304 149.
  • 5Jeong W Y, Young H L, Bakhitier F 2000 Thin Solid Films 374 103.
  • 6Oppedisano C,Tagliaferro A 1999 Appl. Phys. Lett. 75 3650.
  • 7Butter R S, Waterman D R, Lettinggton A H 1997 Thin Solid Films 311 107.
  • 8He X M, Hakovirta M, Nastasi M 2005 Materials Letters 59 1417.
  • 9Yong C H, Dong H S, Han S U 2007 Surf. Coat. Technol. 201 5025.
  • 10Hsieh C T,Chen J M,Huang Y H,Kuo R R,Li C T,Shih H C 2006 J. Vac. Sci. Technol. B: Microelectron Nanometer Struct 24 113.

二级参考文献16

  • 1Endo K and Tatsumi T 195 J. Appl. Phys. 78 1370
  • 2Zhao J S, Choy K L, Teer D G 1999 China Mechanical Engineering10(1)93(in Chinese)[赵建生,Choy K L,Teer D G 1999中国机械工程10(1)93]
  • 3Landford W A and Rand M J 1988 J. Appl. Phys. 49 2473
  • 4Papadimitriou D 2002 Thin Solid Films 414 18
  • 5Wang X et al 2000 J. Appl. Phys. 87 621
  • 6Yokomichi H and Masuda A 2000 Vacuum 59 771
  • 7Xin Y et al 2003 Chin. Phys. Lett. 20 423
  • 8Robertson J 2002 Materials Science and Engineering. R 37 129
  • 9Hakovirta M 2001 Diamond Relat. Mater. 10 1486
  • 10宁兆元 程珊华 叶超.物理学报,2001,50:566-566.

共引文献24

同被引文献52

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部