期刊文献+

基于GA的K均值聚类分析在消费心理学中的应用 被引量:4

Application of GA-based K-means Clustering Analysis in Customer Psychology
下载PDF
导出
摘要 企业为了扩大销售,就必须根据市场细分的原则,通过对消费者的聚类,了解不同消费者的需要。传统的K均值聚类分析对于初始聚类的中心点比较敏感,借助于遗传算法能够搜索到全局最优解的特点,可以克服传统方法的缺点。运用基于GA的K均值聚类分析方法,对于86个不愿意购买某品牌方便面的大学生进行调查,结果表明男生主要是对该方便面的外观包装和面饼大小不满意,女生主要是对它的口感和外观包装不满意。这一分析结果对于企业改进产品设计是有帮助的。 For the purpose of extending distribution, enterprise must know the customer needs by the clustering based on market subdivision. Traditional K-means clustering analysis is sensitive to the initial central points. Due to the advantage of global search ability of genetic algorithm ,which can overcome the shortage of the traditional cluster method. The GA-based K-means clustering analysis was used to treat the data from 86 undergraduate who were unwilling to buy a certain brand instant noodle. The results showed males were dissatisfied with the appearance and quantity of noodle ,while females were dissatisfied with the flavor and appearance. It will be helpful for the enterprise to improve the product design.
作者 余嘉元
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2009年第3期81-84,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家社会科学基金"十一五"规划资助项目(BBA080050)
关键词 遗传算法 K均值聚类分析 市场调查 消费者心理 genetic algorithm K-means clustering analysis marketing research customer psychology
  • 相关文献

参考文献9

二级参考文献52

  • 1华斌,陈玲.基于聚类的科技经费决策分析模型[J].郑州大学学报(理学版),2007,39(3):55-58. 被引量:2
  • 2张雷,李人厚.人工免疫C-均值聚类算法[J].西安交通大学学报,2005,39(8):836-839. 被引量:17
  • 3屈建平,罗文坚,王煦法.基于K-均值聚类的改进非选择算法研究[J].计算机工程与应用,2005,41(28):29-32. 被引量:4
  • 4潘伟,刁华宗,井元伟.一种改进的实数自适应遗传算法[J].控制与决策,2006,21(7):792-795. 被引量:53
  • 5Qu Shouning,Wang Qin,Zou Yan,et al. Intelligent question answering system based on data mining[J]. Journal of Zheng- zhou University: Natural Science Edition, 2007,39 (2) : 50-54.
  • 6MacQueen J. Some methods for classification and analysis of multi-variate observations[C]//Proceedings of the 15th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281-297.
  • 7Bandyopadhyay S, Maulik U. An evolutionary technique based on K-means algorithm for optional clustering in R^N [J]. Information Sciences, 2002,146 (1/2/3/4) : 221-237.
  • 8Krishna K, Murty M N. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics, 1998,29 (5) : 433-439.
  • 9Selim S Z, Ismail M A. K-means-type algorithms:a generalized convergence theorem and characterization of local optimality[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1984(1) :81-87.
  • 10[1]Agrawal R,Imielinski T,Swami A. Mining association rules between sets of items in large databases[A]. Proceedings of the 1993 ACM SIGMOD international conference on management of data[C]. New York :ACM Press,1993. 207-216.

共引文献146

同被引文献18

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部