期刊文献+

加权判决级联分类器人脸检测方法研究

Research of Face Detection Based on Cascade Classifier with Weighted Decision Function
下载PDF
导出
摘要 AdaBoost算法要提高检测精度,需要级联更多的强分类器,这样会降低检测速度。针对这个问题,在AdaBoost级联分类器中引入加权判决函数,对其中相互独立的级联分类器判决结果进行信息融合,不增加级联的强分类器个数,提高了检测率。实验结果表明,该方法在保证检测速度的同时,提高了检测率,在CMU+MIT人脸测试库上取得较好的效果。 This paper develops a novel cascade classifier structure. Weighted decision function is used to hal Pdecision by the classifier in the cascade architecture. It remedies defects of the slow detecting speed, which caused by cascaded a lot of strong classifiers. In or- der to obtain the complementary and effective and comprehensive information, it is necessary for the front of classifiers' results to fuse information. Experimental results on face detection show that the improvement of the recognition performance comparing to traditional cascade AdaBoost classifier. Finally, experimental results on CMU + MIT dataset demonstrate that the algorithm is efficient.
出处 《微计算机应用》 2009年第9期39-42,共4页 Microcomputer Applications
关键词 人脸检测 ADABOOST 级联分类器 加权判决函数 face detection, AdaBoost, cascade classifier, weighted decision function
  • 相关文献

参考文献8

  • 1梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:355
  • 2Viola P, Jones M. Rapid object detection using a boosted cascade of simple features [ C ]. IEEE Conference on CVPR' 2001: 511 -518.
  • 3Niu Z H, Shan S G, Yan S Y. 2D cascade AdaBoost for eye localization[ C ]. Proc. of the 18^th International Conference on Pattern Recognition. New York: IEEE Computer Society Press, 2006, 2:1216 -1219.
  • 4Jianxin Wu, S. Charles Brubaker, Matthew D, et al. Fast Asymmetric Learning for Cascade Face Detection [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2008, 3 (30) : 1 - 14.
  • 5Sung K, Poggio T. Example- based learning for view based human face detection[ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20(1): 39-51.
  • 6熊盛武,宗欣露,朱国锋.改进的基于AdaBoost算法的人脸检测方法[J].计算机应用研究,2007,24(11):298-300. 被引量:14
  • 7Lienhatr R, Ma · t J. An Extended Set of Haar -like Features for Rapid Object Detection[J]. IEEE ICI P2002, Vol. 1,900 -903.
  • 8刘巧静,林福严,李兴森.人脸特征的选取和定位[J].微计算机应用,2000,21(4):207-210. 被引量:4

二级参考文献71

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献368

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部