期刊文献+

基于灰色系统的支持向量回归预测方法 被引量:3

SUPPORT VECTOR REGRESSION BASED ON GREY SYSTEM FOR TIME SERIES FORECASTING
下载PDF
导出
摘要 根据部分时间序列数据贫信息、高噪声和非线性等特点,采用含边值修正的灰色模型进行预测,获取残差序列后运用支持向量回归(SVR)方法对模型进行残差修正得到复合的灰色支持向量回归模型.在支持向量回归中构造具有自适用性的动态惩罚参数Ci替代传统SVR中的不变参数来提高模型的准确性,同时构造算法决定ε以平滑过度调节.广东省工业生产指数的预测试验结果表明,复合模型具有比其他简单模型更理想的预测效果. The common grey model satisfying with verge value condition was adopted to predict financial time series with some characteristics such as poor information, high noise, non-linearity and so on. Then, the model was revised by support vector regression based on the calculation of the residual error sequence between the predicted values and the original data. Auto-adaptive parameters Ci was adopted to replace C in the standard support vector regression to improve the forecasting accuracy. Meanwhile, an algorithm about ε was proposed to smooth overshooting. Experimental results show that the composite model can achieve more accurate prediction and smoothing overshooting than the other simple models in the predictions of IGIP of Guangdong Province.
作者 蒋辉 王志忠
出处 《经济数学》 北大核心 2009年第2期98-105,共8页 Journal of Quantitative Economics
关键词 灰色模型 边值条件 支持向量回归 自适用动态参数 平滑过度调节 grey model verge condition support vector regression auto-adaptive parameters smooth overshooting
  • 相关文献

参考文献2

二级参考文献14

  • 1景行.GM(1,1)的严格微分拟合法及应用[J].系统工程,1993,11(6):31-37. 被引量:16
  • 2陈俊珍.关于灰色系统理论中的累加生成[J].系统工程理论与实践,1989,9(5):10-15. 被引量:39
  • 3邓聚龙 陈绵云 等.灰色模块理论与长期预测模型.未来学论文集[M].-,1984(Ⅰ).41-46.
  • 4陈绵云.灰色系统理论是一个新的研究方向.未来学论文集(Ⅰ)[M].-,1984.26-32.
  • 5邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1987..
  • 6日比宗平.寿命周期费用评价法-方法及实例[M].北京:机械工业出版社,1984.
  • 7Louis E Greene.Life cycke cost (LCC) milestones [J].IEEE.1991:1197-1200.
  • 8俞济祥,航空专业教材编审室.卡尔曼滤波及其在惯性导航中的应用[Z].西安:西北工业大学印刷厂印装(内部发行),1984..
  • 9刘思峰 郭天榜 党耀国.灰色系统理论及其应用[M].北京:科学出版社,1998.58-76.
  • 10邓聚龙.灰色系统理论的GM模型[J].模糊数学,1986,(2):23-31.

共引文献17

同被引文献30

  • 1谢乃明,刘思峰.离散GM(1,1)模型与灰色预测模型建模机理[J].系统工程理论与实践,2005,25(1):93-99. 被引量:352
  • 2梁庆卫,宋保维,吴朝晖.鱼雷使用维护费用灰色模型[J].系统仿真学报,2006,18(1):12-13. 被引量:4
  • 3Deng Julong.Introduction to grey system theory[J].The Journal of Grey System (UK),1989,1(1):1-24.
  • 4Liu Si-feng,Deng Ju-long.The range suitable for GM(1,1)[J].The Journal of Grey System,1999,11(1):131-138.
  • 5国家统计局.按城乡分全社会固定资产投资[EB/OL].[2010-05-17].http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm.
  • 6Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery, 1998, (2).
  • 7Cheng Li, Vishwanathan S V N, Schuurmans Dale, et al. Implicit Online Learning With Kemels[J].Advances in Neural Information Processing Systems, 2006, (19).
  • 8He W. Limited Stochastic Meta-Descent for Kernel-Based Online Learning[J]. Neural Computation,2009, 21 (9).
  • 9He W, Jiang H. Implicit Update vs Explicit Update[C]. In: Proceedings of the 2008 IEEE WorldCongress on Computational Intelligence, Hong Kong: IEEE, 2008.
  • 10Huang Z, Chen H, Hsu C, Chen W, Wu S. Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study[J].Decision Support Systems, 2004, (37).

引证文献3

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部