期刊文献+

一类广义Camassa-Holm方程的孤立尖波、孤子类解和周期解 被引量:4

Peakons,Solitary Patterns and Periodic Solutions for Generalized Camassa-Holm Equations
下载PDF
导出
摘要 应用一种新的数学技巧,即基于用积分因子求解常微分方程的方法,研究了一类广义Camassa-Holm方程,求出了该方程的孤立尖波、孤子类和周期行波解,并在不同的参数条件下分别把孤立尖波、孤子类以及周期行波解用显示公式表示出来,得到的解的结构的定性变化条件是明显的. This paper deals with a generalized Camassa-Holm equation by making use of a mathematical technique based on using integral factors for solving ordinary differential equations. The existence of peakons,solitary patterns and periodic travelling wave solutions is obtained. The peakons,solitary patterns and periodic travelling wave solutions are expressed analytically under various circumstances.The conditions which cause the qualitative change in the physical structures of the solutions are clear.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期572-575,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10871206) 广西科学基金(0575092) 广西教育厅科学基金(D2008007)资助项目
关键词 CAMASSA-HOLM方程 孤立尖波 孤子类解 周期解 Camassa-Holm equations Peakons Solitary patterns Periodic solutions
  • 相关文献

参考文献24

  • 1Rosenau P, Hyman J M. Compactons,solitons with finite wave lengths[J]. Phys Rev Lett,1993,70(5) :564-567.
  • 2Camassa R, Holm D D. Ar integrable shallow water equation with peaked solitons [ J ]. Phys Rev Lett, 1993,71 ( 11 ) :1661-1664.
  • 3Ivanov R. On the integrabil ty of a class of nonlinear dispersive wave quations [J]. Nonlinear Math Phys ,2005,12(4) :462468.
  • 4Alber M S, Miller C. Peakon solutions of the shallow water equation[J]. Appl Math Lett,2001,14( 1 ) :93-98.
  • 5Li Y A, Olver P J. Converl;cnce of solitary-wave solutions in a perturbed bi-Hamihonian dynamical system I :compactons and peakons [J]. Discrete Contin Dyn Syst, 1997,3 ( 4 ) : 19-32.
  • 6Li Y A, Olver P J. Convenence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system II :complex analytic behaviour and convergence to non-analytic solutions[J]. Discrete Contin Dyn Syst, 1998,4 (4):159-91.
  • 7Liu Z R, Wang R Q, Jing Z J. Peaked wave solutions of Camassa-Hohn equation[J]. Chaos,Solitons & Fractals,2004,19( 1 ) : 77 -92.
  • 8Liu Z, Qian T. Peakons of the Camassa-Holm equation[ J ]. Appl Math Model ,2002,26 (4) :73-80.
  • 9Yin Zheng, Lai Shao-yong. Peakons, solitary patterns and periodic solutions for generalized Camassa-holm equations [ J ]. Phys Lett ,2008, A372:4141-4143.
  • 10Dullin H R, Gottwald G, Holm D D. An integrable shallow water equation with linear and nonlinear dispersion [ J ]. Phys Rev Lett ,2001,87(19) :4501-4504.

二级参考文献75

共引文献63

同被引文献74

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部