期刊文献+

气膜孔形状对涡轮叶片气膜冷却效果的影响 被引量:10

Influence of Air-film Hole Shapes on Turbine Blade Air-film Cooling Effectiveness
下载PDF
导出
摘要 基于控制容积法对三维定常不可压缩N-S方程进行离散,采用非结构化网格及两层k-ε湍流模型,在吹风比M为0.6和1.2的情况下,数值模拟了气膜孔几何形状对涡轮叶片气膜冷却效果的影响,得到了气膜孔附近的流场分布。所选孔形为圆柱孔、前向扩张孔、开槽前向扩张孔及新型缩放槽缝孔。结果表明:圆柱孔的冷却效率随着吹风比的增加而显著地降低;开槽前向扩张孔的冷却效率优于圆柱孔和前向扩张孔;缩放槽缝孔在不同吹风比下的冷却效率均高于其它3种孔形,缩放槽缝孔和开槽前向扩张孔不同程度地抑制了反向涡旋对的产生,提高了射流对壁面的贴附性,增强了壁面的冷却效果。 On the basis of a bulk flow control method,discretized was a three-dimensional steady incompressible N-S equation.By using a non-structured grid and two-layer k-ε turbulent flow model and under the condition of the air blowing ratio M being 0.6 and 1.2,numerically simulated was the influence of air-film hole shapes on turbine blade air-film cooling effectiveness,and obtained was the flow field distribution around the air-film holes.The hole shapes chosen were cylindrical,forward flared,slot-shaped forward flared and new type converging-diverging slotted holes.It has been found that the cooling efficiency of cylindrical holes is reduced significantly with an increase of the air blowing ratio,the cooling efficiency of slot-shaped forward flared holes is superior to that of cylindrical and forward flared holes and the cooling efficiency of converging-diverging slotted holes at different air blowing ratios is invariably higher than that of the other three kinds of hole shapes.The converging-diverging slotted holes and slot-shaped forward flared holes can restrain the production of reverse vortex pairs to a certain extent and strengthen the wall-adhesion property of jet flows,thus enhancing the cooling effectiveness to wall surfaces.
作者 戴萍 林枫
出处 《热能动力工程》 CAS CSCD 北大核心 2009年第5期560-565,677-678,共6页 Journal of Engineering for Thermal Energy and Power
关键词 涡轮叶片 缩放槽缝孔 开槽前向扩张孔 气膜冷却效率 湍流模型 数值模拟 turbine blade,converging-diverging slot-shaped hole,slot-shaped forward flared hole,air-film cooling efficiency,turbulent flow model,numerical simulation
  • 相关文献

参考文献22

  • 1朱惠人,许都纯,刘松龄.气膜孔形状对排孔下游冷却效率的影响[J].航空学报,2002,23(1):75-78. 被引量:55
  • 2EKKAD S V,ZAPATA D,HAN J C. Film effectiveness over a flat surface with Air and CO2 film injection through compound angle holes using a transient liquid erys tal image method[J]. ASME Journal of Turbomachinery, 1997,119:587 - 593.
  • 3SCHMIDT D L, SEN B, BOGARD D G. Film esoling with Compotmd angle holes: adiabatic effectiveness[ J]. ASME Journal of Turbomachinery, 1996,118:807 - 813.
  • 4GRITSCH M, SCHULZ A, WITTIG S. Heat transfer coefficient measurements of film cooling holes with expanded slots [ R ]. ASME Paper 98 - GT- 28,1998.
  • 5GRITSCH M, COLBAN W, SCHAR H, et al. Effect of hole geometry on the thermal performance of fan - shaped film cooling holes[J]. ASME Journal of Turbomachinery,2005,127(4) :718 - 725.
  • 6KIM Y J, KIM S M. Influence of shaped injection holes on turbine blade leading edge film cooling [ J ]. International Journal of Heat and Mass Transfer,2004,47:245 - 256.
  • 7SARGISON J E,GUO S M, OLDFIELD M L,et al.A converging slot- hole film - cooling geometry, part I : low - speed fiat - plate heat transfer and loss[ J]. ASME Journal of Turbomachinery,2002,124:453 -460.
  • 8SARGISON J E, GUO S M, OLDFIELD M L, et al. A converging slot - hole film - cooling geometry, part II : transonic nozzle guide wane heat transfer and loss[J]. ASME Journal of Turbomachinery,2002,124:461 - 471.
  • 9LU Y. Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades [ D ]. Louisiana State University,2007.
  • 10LU Y, EKKAD S. Predictions of film cooling from cylindrical holes embedded in trenches//9th AIAA Joint Thermophysics and Heat Transfer Conference[ C ]. San Francisco,2006: 5 - 8.

二级参考文献34

  • 1徐红洲.气膜冷却的实验研究[M].西安:西北工业大学,1996..
  • 2Tamamidis P, Assanis D N. Three-dimensional incompressible flow calculations with alternative discretization schemes[J]. Numerical Heat Transfer, Part B, 1993, 24(1):57-76.
  • 3Lakehal D, Theodoridis G, Rodi W. Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model[J].Int. J. of Heat & Fluid Flow,2001, 22(2):113-122.
  • 4Yuan L L, Street R L. Large-eddy simulation of a round jet in crossflow[J].J.Fluid Mech., 1999, 379(1): 71-104.
  • 5Yakhot V, Orzag S A. Renormalization group analysis of turbulence:basic theory[J]. J. Science Comput., 1986, 1(1): 1-51.
  • 6Crabb D, Durao D F G. A round jet normal to a crossflow[J].J.Fluids Engng., 1981, 103(1): 142-153.
  • 7Andreopoulos J, Rodi W. Experimental investigation of jets in a crossflow[J].J.Fluid Mech., 1984, 138(1): 93-127.
  • 8Fric T F, Roshko A. Vortical structure in the wake of a transversejet[J].J.Fluid Mech., 1994, 279(1): 1-47.
  • 9Smith S H, Mungal M G. Mixing, Structure and scaling of the jet in crossflow[J].J.Fluid Mech., 1998, 357(1): 83-122.
  • 10Johari H. Penetration and mixing of fully modulated turbulent jets in crossflow[J].AIAA Journal, 1999, 37(7): 842-850.

共引文献108

同被引文献107

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部