期刊文献+

基于多频带2D-PCA的虹膜识别算法 被引量:2

Iris Recognition Based on Wavelet Transform and 2D-PCA
下载PDF
导出
摘要 近年来,二维主分量分析(2D-PCA)和离散小波变换作为图像分析的两种有效方法,受到人们的广泛关注。结合以上两种方法,提出了一种多频带2D-PCA虹膜识别快速算法。该算法首先对虹膜图像做预处理,然后将预处理后的图像做2维离散小波变换,取小波系数的两个中频子带作为2D-PCA的输入空间;在训练阶段,求得训练样本输入空间的特征空间并由此得到训练样本的特征向量,形成样本特征库;在识别阶段,计算得到未知样本特征向量;同时为了提高特征向量对图像旋转的鲁棒性,在该阶段进行了基于不同起始角度的归一化处理。最后采用Hamming距离,对未知样本的特征向量在特征库中进行多模板匹配,通过K临法则和阈值法得到识别结果。实验结果验证了所提算法的有效性。 Recently, as tow effective methods for image analysis, 2D-PCA and wavelet transform get extensive attentions. A fast iris recognition arithmetic was proposed in this paper based on 2D-PCA and wavelet. Firstly, we pre-dealt with the image; then applied 2D-PCA on the two third level middle-frequence subband of wavelet coefficient, then got the feature vector by combination and symbol quantify ; finally, we applied multi-templet matching between unknown class sample and feature database,in the same time, in order to increase the robustness against rotation of the original image, we applied a anti-rotation method on the unknown class image;then got the recognition result by K-Neighbor and threshold. The experiment result validates the efficiency of the arithmetic proposed.
出处 《计算机科学》 CSCD 北大核心 2009年第10期280-283,共4页 Computer Science
基金 辽宁省自然基金项目(20072156) 辽宁省教育厅科学技术研究项目(20060486) 南京邮电学院图像处理与图像通信江苏省重点实验室开放基金(ZK207008)资助
关键词 虹膜识别 二维主分量分析 小波 HAMMING距离 旋转不变 Iris recongnition, 2D-PCA, Wavelet, Hamming distance, Rotation invariance
  • 相关文献

参考文献8

  • 1Turk M, Pentland A. Eigenfaces for Recognition[J]. Cognitive Neuroscience J,1991,3(1):71-86.
  • 2Yang J, Zhang D, Frangi A F, et al. Tow - dimensional PCA : A New Approach to Appearance -based Face Representation and Recognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004,26 ( 1 ) : 131-137.
  • 3Lim S, Lee K, Bveon O, et al. Efficient iris recognition through improvement of feature vector and classifier [J]. ETRI Journal, 2001,23(2):61-70.
  • 4明星,刘元宁,朱晓冬,徐涛.基于平移不变预处理的小波变换的虹膜识别算法[J].计算机研究与发展,2006,43(7):1186-1193. 被引量:5
  • 5Daugman J. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Trans, PAMI, 1993,15 (11) : 1148-1161.
  • 6CASIA Iris Image Database[OL]. http://www. sinobiometries. com, 2005.
  • 7Mansfield A J, Wayan J L. Best practices in testing and reporting performance of biornetric devices [R]. CMSC14 /02. Middlesex, U. K. : National Physical Laboratory, 2002.
  • 8Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Trans, PAMI, 1998, 20 (7):674-693.

二级参考文献13

  • 1J. Daugman. High confidence visual recognition of persons by a test of statistical independence [J]. IEEE Trans. PAMI, 1993,15(11): 1148-1161
  • 2R. P. Wildes, J. C. Asmuth. A machine vision system for iris recognition [J]. Machine Vision and Applications, 1996, 9(1) : 1-8
  • 3W. W. Boles, B. Boashash. A human identification technique using images of the iris and wavelet transform [J]. IEEE Trans.Signal Processing, 1998, 46(4) : 1185-1188
  • 4Y. Zhu, T. Tan, Y. Wang. Biometrie personal identification basedq on iris patterns [C]. The 15th Int'l Conf. Pattern Recognition, vol. Ⅱ, Barcelona, Spain, 2000
  • 5C. Sanchez-Avila, R, Sanchez-Reillo. Iris-based biometric recognition using dyadic wavelet transform [J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(10):3 - 6
  • 6S. Lim, K. Lee, O. Byeon, et al. Efficient iris recognition through improvement of feature vector and classifier [J]. ETRI Journal, 2001, 23(2): 61-70
  • 7S. Noh, K. Bae, Y. Park, et al. A novel method to extract features for iris reeognition system [G]. In: Proe. 4th Int'l Conf. Audio-and Video-Based Biometric Person Authentication,LNCS 2688. Berlin; Springer, 2003. 862-868
  • 8X. Ming, T. Xu, X. Wang. Using multi-matching system based on a simplified deformable model of the human iris for iris recognition [G]. In: Prec. 1st Int'l Conf. Biometric Authentication (ICBA 2004), LNCS 3072. Berlin: Springer,2004. 434-441
  • 9L. Ma, Y. Wang, D. Zhang. Efficient iris recognition by characterizing key local variations [J]. IEEE Trans. Image Processing, 2004, 13(6): 739-750
  • 10S. G. Mallat. A theory for multiresolution signal decomposition:The wavelet representation [J]. IEEE Trans. PAMI, 1998, 20(7) : 674-693

共引文献4

同被引文献24

  • 1李鹏,杨康.Gabor滤波算法在指纹识别中的应用[J].沈阳工业学院学报,2004,23(3):6-8. 被引量:10
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3YUAN Xiao-yan,ZHOU Hao,SHI Peng-fei.Iris recognition:a biometric method after refractive surgery[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(8):1227-1231. 被引量:3
  • 4周新虹,彭玉华,薛玉利,杨明.应用小波变换和支持向量机的掌纹识别[J].计算机工程与应用,2007,43(22):238-240. 被引量:3
  • 5潘新.掌纹识别关键算法的研究[D].北京交通大学博士学位论文.2009,59-60.
  • 6J. G. Daugman. Two - dimensional spectral analysis of cortical receptive field profiles. Vision Res. , 1980,20:847 - 856.
  • 7W. K. Kong, D. Zhang, W. Li. Palmprint feature extraction using 2 -DGabor filters[ J]. Pattern Recognition,2003,36 (10) :2339 -2347.
  • 8YANG J, ZHANG D. Two - dimensional PCA : a new approach to appearance based face represenation and recognition[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26( 1 ) : 131 - 137.
  • 9马猷.基于2DPCA的掌纹识别方法研究[D].华南理工大学硕士学位论文.2010,46-49.
  • 10V. N. Vapnik. Statistical learning theory [ M ]. New York: Wiley, 1998.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部