期刊文献+

一种卫星编队整体机动的规划方法研究 被引量:2

Study of a Planning Approach for Satellite Formation Maneuvering
下载PDF
导出
摘要 针对卫星编队整体机动的难点,充分考虑编队的"群"运动特性,按照先规划参考卫星轨迹,后规划伴随卫星轨迹的思路,提出一种整体机动的分步规划策略。采用Gauss伪谱法优化参考卫星的轨迹,并检验优化结果的最优性;根据整体机动过程中的路径约束,以参考卫星的轨迹为参考,规划伴随卫星的可行飞行区域;根据终端约束条件,在可行区域规划伴随卫星的飞行轨迹;引入动态逆的思想,根据伴随卫星飞行轨迹反推相应的控制量;最后,分析了伴随卫星轨迹在控制上的可行性,并分析了整体机动轨迹最优性性能。仿真分析表明,该方法计算量小,能满足整体机动的任务要求。 Taking the advantage of the ' cluster' character of the motion, a two-stage plan strategy for satellite formation maneuvering is presented. The first stage is to plan the maneuvering trajectory of the reference satellite, the secondly stage is to plan the trajectories of the concomitant satellites. The trajectory of the reference satellite is optimized and validated by Gauss Pseudospectral Method (GPM). Based on the reference trajectory, the feasible flying area of the concomitant satellites are determined according to the path constraints . The trajectories of the concomitant satellites are in the feasible flying area, connecting the initial states and the final states of the formation. And the control variables are deduced from the trajectories based on the dynamic inversion method. Lastly, the feasibly of the trajectories of the concomitant satellites is analyzed. And the optimal condition of the results is validates. Simulation results show the approach can reduce the computing amount, and can satisfy all the requirements of the satellite formation maneuvering mission.
出处 《宇航学报》 EI CAS CSCD 北大核心 2009年第5期1848-1853,1860,共7页 Journal of Astronautics
关键词 整体机动 规划策略 GAUSS伪谱法 可行飞行区域 伴随卫星轨迹 动态逆方法 Formation maneuvering Planning strategy Gauss pseudospectral method Feasible flying area Trajectories of concomitant satellites Dynamic inversion method
  • 相关文献

参考文献9

  • 1Zanon D J, Campbell M E. Optimal planning for tetrahedral formations near elliptical orbits [ J]. AIAA Guidance, Navigation, and Control Conference and Exhibit 16 -19, 2004, 8:1 -15.
  • 2Xin M, Balakrishnan S N, Pernicka H J. Position and attitude control of deep-space spacecraft formation flying via virtual structure and 0-d technique [ J]. AIAA Guidance, Navigation, and Control Conference and Exhibit 15 - 18, 2005, 8 : 1 - 15.
  • 3梁新刚,杨涤.有限推力下时间最优轨道转移[J].航天控制,2007,25(1):46-51. 被引量:12
  • 4Mendy P B, Jr. Multiple satellite trajectory optimization [ D ]. Monterrey, Naval Postgraduate School, 2004 : 15 - 92.
  • 5Aoude G S. Two-stage path planning approach for designing mul- tiple spacecraft reconflguration maneuvers and application to SPHERES onboard ISS[ D]. Cambridge, Massachusetts Institute of Technology, 2007 : 3 - 66.
  • 6杜金刚.基于动态逆方法的飞行控制系统设计与仿真[D].西北工业大学研究生院,2007:10-19.
  • 7Huntington Geoffrey Todd. Advancement and analysis of a gauss pseudospectral transcription for optimal control problems [ D ]. Cambridge, Massachusetts Institute of Technology, 2007:115 - 143.
  • 8雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 9Qi G, Ross I M, Wei K, Fahroo F. Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control[ J]. Comput Optim Appl DOI. 10. 1007/s10589-007-910 -2 -4, 2007, 1:1 -29.

二级参考文献32

  • 1[1]Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control and Dynamics,1998,21(2):193-206.
  • 2[2]Ross I M,Fahroo F.A perspective on methods for trajectory optimization[C].In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit.Monterey,CA,2002:1-7.
  • 3[3]Hull D G.Conversion of optimal control problems into parameter optimization problems[J].Journal of Guidance,Control and Dynamics,1997,20(1):57-60.
  • 4[4]Enright P J,Conway B A.Optimal finite-thrust spacecraft trajectories using collation and nonlinear programming[J].Journal of Guidance,Control and Dynamics,1991,10(5).
  • 5[10]Lu P.Inverse dynamics approach to trajectory optimization for an aerospace plane[J].Journal of Guidance,Control and Dynamics,1993,16(4):726-732.
  • 6[11]Bellman R E.Dynamic Programming[M].Princeton,USA:Princeton University Press,1957.
  • 7[13]Luus R.Iterative dynamic programming:from curiosity to a practical optimization procedure[J].Control and Intelligent Systems,1998,26:1-8.
  • 8[14]Bousson K.Single Gridpoint Dynamic Programming for trajectory Optimization[C].In.AIAA Atmospheric Flight Mechanics Conference and Exhibit.San Francisco,California,2005:1-8.
  • 9[15]Adam W,Tim C,Ellen B.Genetic algorithm and calculus of variations-based trajectory optimization technique[J].Journal of Spacecraft and Rockets,2003,40(6):882-888.
  • 10[16]Chen G,Hu Y,Wan Z M,et al.RLV Reentry Trajectory Multi-objective Optimization Design Based on NSGA-II Algorithm[C].In.AIAA Atmospheri Flight Mechanis Conferene and Exhibit.San Francisco,California,USA,2005:1-6.

共引文献135

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部